[EM] An ABE solution.
MIKE OSSIPOFF
nkklrp at hotmail.com
Fri Nov 18 12:14:29 PST 2011
Hi Forest--
Thanks for answering my question about MTA vs MCA. Your argument on that question is convincing, and
answers my question about the strategy difference between those two methods.
Certainly, electing C in the ABE avoids the ABE problem. I'd been hoping that the election of C can be attained
without diverging from Plurality's results enough to upset some people, as MMPO and MDDTR seem to
do.
So the method that you describe might avoid the public relations (non)problems of methods that elect
A.
I have a few questions about the method that you describe:
1. What name do you give to it? In this post I'll call it "Range till cover-winner" or RCW
2. The covering relation doesn't look at pairwise ties?
3. Does the ballot ask the voter for cardinal ratings of the candidates, or is the range score
calculated a la Borda?
4. How does it do by FBC? And by the criteria that bother some people here about MMPO (Kevin's
MMPO bad-example) and MDDTR (Mono-Add-Plump)?
There's much hope that, by electing C instead of A, RCW can avoid those criticisms.
I'm also interested in how it does by 1CM and 3P, but I'll look at that, instead
of asking you to do everything for me, especially since I'm the one promoting those
two criteria.
Mike
Here’s my current favorite deterministic proposal: Ballots are Range Style, say three slot for simplicity.
When the ballots are collected, the pairwise win/loss/tie relations are
determined among the candidates.
The covering relations are also determined. Candidate X covers candidate Y if X
beats Y as well as every candidate that Y beats. In other words row X of the
win/loss/tie matrix dominates row Y.
Then starting with the candidates with the lowest Range scores, they are
disqualified one by one until one of the remaining candidates X covers any other
candidates that might remain. Elect X.
For practical purposes this method is the same as Smith//Range. Where they
differ, the member of Smith with the highest range score is covered by some
other Smith member with a range score not far behind.
This method resolves the ABE (approval bad example) in the following way:
Suppose that the ballots are
49 C
27 A(top)>B(middle)
24 B
No candidate covers any other candidate. The range order is C>B>A. Both A and
B are removed before reaching candidate C, which is not covered by any
remaining candidate. So the Smith//Range candidate C wins.
If the ballots are sincere, then nobody can say that the Range winner was a
horrible choice. But more to the point, if the ballots are sincere, the A
supporters have a way of rescuing B: just rate hir equal top with A.
Suppose, on the other hand that the B supporters like A better than C and the A supporters know this. Then the threat of C being elected will deter B faction defection, and they will rationally vote A in the middle:
49 C
27 A(top)>B(middle)
24 B(top)>A(middle)
Now A covers both other candidates, so no matter the Range score order A wins.
This completely resolves the ABE to my satisfaction.
The method also allows for easy defense against burial of the CW.
In the case
40 A>B (sincere A>C>B)
30 B>C
30 C>A
where C is the sincere CW, the C supporters can defend C's win by truncating A. Then the Nash equilibrium is
40 A
30 B>C
30 C
in which C is the ballot CW, and so is elected.
Now for another topic...
MTA vs. MCA
I like MTA better than MCA because in the case where they differ (two or more
candidates with majorities of top preferences) the MCA decision is made only by
the voters whose ballots already had the effect of getting the ”finalists” into
the final round, while the MTA decision reaches for broader support.
Because of this, in MTA there is less incentive to top rate a lesser evil. If
you don’t believe the fake polls about how hot the lesser evil is, you can take
a wait and see attitude by voting her in the middle slot. If it turns out that
she did end up as a finalist (against the greater evil) then your ballot will
give her full support in the final round.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.electorama.com/pipermail/election-methods-electorama.com/attachments/20111118/49bea4ab/attachment-0004.htm>
More information about the Election-Methods
mailing list