<html><head></head><body><div class="ydpdc1cb2cbyahoo-style-wrap" style="font-family:Helvetica Neue, Helvetica, Arial, sans-serif;font-size:16px;"><div></div>
<div>What is maximal about the lotteries?</div><div><br></div><div>Toby</div><div><br></div>
<div id="ydpdc1cb2cbyahoo_quoted_1436993257" class="ydpdc1cb2cbyahoo_quoted">
<div style="font-family:'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:13px;color:#26282a;">
<div>
On Tuesday 24 June 2025 at 13:16:27 BST, Daniel Kirslis via Election-Methods <election-methods@lists.electorama.com> wrote:
</div>
<div><br></div>
<div><br></div>
<div><div id="ydpdc1cb2cbyiv6270236593"><div><div dir="ltr">Here you go bud: <div><a shape="rect" href="https://en.wikipedia.org/wiki/Condorcet_winner_criterion" rel="nofollow" target="_blank">https://en.wikipedia.org/wiki/Condorcet_winner_criterion</a></div><div><a shape="rect" href="http://en.wikipedia.org/wiki/Maximal_lotteries" rel="nofollow" target="_blank">http://en.wikipedia.org/wiki/Maximal_lotteries</a></div></div><br clear="none"><div id="ydpdc1cb2cbyiv6270236593yqt56462" class="ydpdc1cb2cbyiv6270236593yqt6983973018"><div class="ydpdc1cb2cbyiv6270236593gmail_quote ydpdc1cb2cbyiv6270236593gmail_quote_container"><div dir="ltr" class="ydpdc1cb2cbyiv6270236593gmail_attr">On Mon, Jun 23, 2025 at 8:24 PM Chris Benham via Election-Methods <<a shape="rect" href="mailto:election-methods@lists.electorama.com" rel="nofollow" target="_blank">election-methods@lists.electorama.com</a>> wrote:<br clear="none"></div><blockquote style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex;" class="ydpdc1cb2cbyiv6270236593gmail_quote">I don't know what the "maximal lotteries method" is, and I guess that is <br clear="none">
true of other members of this list. But just going by its name I doubt <br clear="none">
that it would appeal to me.<br clear="none">
<br clear="none">
Is the Condorcet "winner principle" something different from the <br clear="none">
Condorcet criterion? Because that is a binary pass-or-fail thing.<br clear="none">
<br clear="none">
Chris Benham<br clear="none">
<br clear="none">
<br clear="none">
On 24/06/2025 7:44 am, Daniel Kirslis via Election-Methods wrote:<br clear="none">
> For those of you who believe in the Condorcet winner criterion, is <br clear="none">
> there anyone who doesn't agree that the maximal lotteries method is <br clear="none">
> the theoretically soundest Condorcet method?<br clear="none">
><br clear="none">
> Amongst the Condorcet methods, it seems to me that maximal lotteries <br clear="none">
> is clearly the best, at least in principle (that is to say, if we <br clear="none">
> ignore more practical concerns about ease of administration and <br clear="none">
> popular understanding). All deterministic Condorcet methods fail the <br clear="none">
> participation criterion. Therefore, a non-deterministic method is the <br clear="none">
> way to go, and the question becomes: "How shall we assign <br clear="none">
> probabilities amongst the Smith set?" I cannot imagine a more elegant <br clear="none">
> and fair-minded way of doing so than the maximal lotteries method.<br clear="none">
><br clear="none">
> Is there anyone out there who understands the maximal lotteries method <br clear="none">
> but still thinks that there exists another method that better <br clear="none">
> satisfies the Condorcet winner principle? If so, why?<br clear="none">
><br clear="none">
> ----<br clear="none">
> Election-Methods mailing list - see <a shape="rect" href="https://electorama.com/em" rel="nofollow" target="_blank">https://electorama.com/em</a> for list info<br clear="none">
----<br clear="none">
Election-Methods mailing list - see <a shape="rect" href="https://electorama.com/em" rel="nofollow" target="_blank">https://electorama.com/em</a> for list info<br clear="none">
</blockquote></div></div>
</div></div><div class="ydpdc1cb2cbyqt6983973018" id="ydpdc1cb2cbyqt29897">----<br clear="none">Election-Methods mailing list - see <a shape="rect" href="https://electorama.com/em" rel="nofollow" target="_blank">https://electorama.com/em</a> for list info<br clear="none"></div></div>
</div>
</div></div></body></html>