<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>Dan, <br>
      <br>
      The new short version of your paper I also find opaque. Earlier
      you agreed with Andrew that <br>
      <br>
      <blockquote type="cite">It seems like the short version is that
        the winner is the candidate with the smallest sum of SQUARES of
        non-victories (defeats plus ties) against their opponents.</blockquote>
      <br>
      And then you told me that in this example<br>
      <br>
      46 A<br>
      44 B>C<br>
      10 C<br>
      <br>
      your  K-count method elects A.<br>
      <br>
      C>A 54-46,   A>B  46-44,   B<C 44-10<br>
      <br>
      Each candidate has only one "non-victory".  So then I take it
      then, using Andrew's version  the winner is C, because squaring
      the pairwise non-victory scores of  C44,  B46,  A54 doesn't change
      their order and C's is the smallest.<br>
      <br>
      Obviously one of us has it wrong.<br>
      <br>
      Chris<br>
      <br>
      <br>
    </p>
    <div class="moz-cite-prefix">On 20/05/2025 8:58 am, Daniel Kirslis
      via Election-Methods wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:CAFFnmiartw1c57xpp8D7ksqF5PRCqDjNK4zbCdbKJgcn4pZY+w@mail.gmail.com">
      <meta http-equiv="content-type" content="text/html; charset=UTF-8">
      <div dir="ltr">Hi Chris,
        <div><br>
        </div>
        <div>Yes, that is correct. I have created a simplified version
          of the paper that attempts to explain the method in the most
          concise possible way. It's only two pages: <a
href="https://drive.google.com/file/d/1F_I2ZBUKXKbmcS-uSvMAf_gNdNO8m0GB/view?usp=drive_link"
            moz-do-not-send="true" class="moz-txt-link-freetext">https://drive.google.com/file/d/1F_I2ZBUKXKbmcS-uSvMAf_gNdNO8m0GB/view?usp=drive_link</a></div>
        <div><br>
        </div>
        <div>It skips over a lot of the background that explains why I
          view this as a compromise between the Borda count and
          Condorcet methods and just focuses on explaining the method
          itself. Once you see how the plotting works, it is like Bocce
          Ball - closest to the target ball wins.</div>
        <div><br>
        </div>
        <div>Thank you for your engagement on this. I should have
          started with this version of the paper!</div>
      </div>
      <br>
      <div class="gmail_quote gmail_quote_container">
        <div dir="ltr" class="gmail_attr">On Mon, May 19, 2025 at
          12:32 PM Chris Benham via Election-Methods <<a
            href="mailto:election-methods@lists.electorama.com"
            moz-do-not-send="true" class="moz-txt-link-freetext">election-methods@lists.electorama.com</a>>
          wrote:<br>
        </div>
        <blockquote class="gmail_quote"
style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
          <div>
            <blockquote type="cite">
              <div style="font-family:Arial,sans-serif;font-size:14px"><br>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px">It
                seems like the short version is that the winner is the
                candidate with the smallest sum of SQUARES of
                non-victories (defeats plus ties) against their
                opponents.</div>
            </blockquote>
            <div><br>
              I take that these numbers you are squaring are the
              candidate's opposing and tying vote scores, and not simply
              the number of such results. Is that right?  <br>
              <br>
              Because otherwise that would often be very indecisive,
              like Copeland.<br>
              <br>
              <br>
              On 19/05/2025 1:40 am, Andrew B Jennings (elections) via
              Election-Methods wrote:<br>
            </div>
            <blockquote type="cite">
              <div style="font-family:Arial,sans-serif;font-size:14px">Hi
                Dan,</div>
              <div style="font-family:Arial,sans-serif;font-size:14px"><br>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px">Great
                paper. Thank you for posting!</div>
              <div style="font-family:Arial,sans-serif;font-size:14px"><br>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px">It
                seems like the short version is that the winner is the
                candidate with the smallest sum of SQUARES of
                non-victories (defeats plus ties) against their
                opponents.</div>
              <div style="font-family:Arial,sans-serif;font-size:14px"><br>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px">Taking
                the square root and dividing can make it meaningful by
                scaling it to [0,1] or [0,s] (where s is the number of
                voters), but doesn't change the finish order.</div>
              <div style="font-family:Arial,sans-serif;font-size:14px">
                <div> </div>
                <div> </div>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px"><br>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px">It
                does seem like an interesting attempt to "square the
                circle" (great pun) and compromise between Borda and
                Condorcet. I hadn't realized that Borda and Minimax are
                minimizing the one-norm and infinity-norm in the same
                geometric space. The two-norm certainly seems like it
                should be explored.</div>
              <div style="font-family:Arial,sans-serif;font-size:14px"><br>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px">I
                would love to see the proof of non-favorite-betrayal.</div>
              <div style="font-family:Arial,sans-serif;font-size:14px"><br>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px">Best,</div>
              <div style="font-family:Arial,sans-serif;font-size:14px"><br>
              </div>
              <div style="font-family:Arial,sans-serif;font-size:14px">~
                Andy</div>
              <div> On Thursday, May 15th, 2025 at 4:25 PM, Daniel
                Kirslis via Election-Methods <a
                  href="mailto:election-methods@lists.electorama.com"
                  target="_blank" moz-do-not-send="true"><election-methods@lists.electorama.com></a>
                wrote:<br>
                <blockquote type="cite">
                  <div dir="ltr">
                    <div>
                      <div>Hello!</div>
                      <div><br>
                      </div>
                      <div>I am a newcomer to this mailing list, so
                        please forgive me if this message violates any
                        norms or protocols that the members of this list
                        adhere to. </div>
                      <div><br>
                      </div>
                      <div>I have recently developed a novel method for
                        tabulating ranked-choice elections that attempts
                        to reconcile the concerns of Borda and
                        Condorcet. I believe that it maintains the
                        simplicity and mathematical elegance of the
                        Borda count while incorporating Condorcet's
                        concern with pairwise dominance. Intuitively, it
                        can be understood as ordering candidates by how
                        close they come to being unanimously selected
                        when plotted in Cartesian coordinate space. Here
                        is a link to the paper:</div>
                      <div><a rel="noreferrer nofollow noopener"
href="https://drive.google.com/file/d/152eNheS2qkLHJbDvG4EwW3jdO4I_NwcX/view?usp=sharing"
                          target="_blank" moz-do-not-send="true"
                          class="moz-txt-link-freetext">https://drive.google.com/file/d/152eNheS2qkLHJbDvG4EwW3jdO4I_NwcX/view?usp=sharing</a></div>
                    </div>
                    <div><br>
                    </div>
                    <div>Given its simplicity, I have been very
                      surprised to discover that this method has never
                      been proposed before. I am hoping that some of you
                      all will take a look at the paper and share your
                      comments, questions, and critiques. Ultimately, it
                      is my hope that ranked-choice voting advocates can
                      arrive at a consensus about the best method for
                      RCV and thus strengthen efforts to adopt it and
                      deliver much needed democratic improvements. But
                      even if you don't find the system itself
                      compelling, you may find the method of plotting
                      electoral outcomes elucidated in the paper to be
                      useful for the analysis of other electoral
                      systems.</div>
                    <div><br>
                    </div>
                    <div>Thank you!</div>
                    <div><br>
                    </div>
                    <div>-Dan</div>
                  </div>
                </blockquote>
                <br>
              </div>
              <br>
              <fieldset></fieldset>
              <pre>----
Election-Methods mailing list - see <a href="https://electorama.com/em"
              target="_blank" moz-do-not-send="true"
              class="moz-txt-link-freetext">https://electorama.com/em</a> for list info
</pre>
            </blockquote>
          </div>
          ----<br>
          Election-Methods mailing list - see <a
            href="https://electorama.com/em" rel="noreferrer"
            target="_blank" moz-do-not-send="true"
            class="moz-txt-link-freetext">https://electorama.com/em</a>
          for list info<br>
        </blockquote>
      </div>
      <br>
      <fieldset class="moz-mime-attachment-header"></fieldset>
      <pre wrap="" class="moz-quote-pre">----
Election-Methods mailing list - see <a class="moz-txt-link-freetext" href="https://electorama.com/em">https://electorama.com/em</a> for list info
</pre>
    </blockquote>
  </body>
</html>