<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p><br>
    </p>
    <p>Just a preliminary remark. Divisor methods and quotas some times
      distinguished. Thus there is the Droop quota and corresponding
      D'Hont divisor method. Divisor methods regarded as belonging to
      apportionment, as by Jefferson and by Webster, not to carve out
      party seats, which is too restrictive of personal choice.<br>
    </p>
    <p><br>
    </p>
    <div class="moz-cite-prefix">On 06/09/2023 05:05, Michael Ossipoff
      wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:CAOKDY5A6GNwS4+CrXiYuYCr8gc2ORNrntnA7=PY1Vk4SMX_GKg@mail.gmail.com">
      <div dir="ltr">
        <p class="MsoNormal"><span>Greetings
            list-members—<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>In
            2006, I proposed an allocation divisor-method that I called
            Bias-Free, which
            eliminates bias. I’d like, in this message, to better
            explain my derivation of
            Bias-Free (BF).<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Instead
            of defining “bias”, I’ll just let the derivation of BF tell
            what it guarantees,
            and anyone can decide whether that’s unbias.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Outline
            of derivation of Bia-Free (BF):<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>First,
            to define the terms in the explanation, I should say what a
            divisor-method is:<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Divide
            total votes by total seats. That’s the Hare Quota.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Divide
            each party’s votes by the Hare Quota, & round off to one
            of the two closest
            integers. (Each divisor-method uses a different round-up
            point.)<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Allocate
            seats according to those rounding-results.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>If
            the number of seats thus allocated equals the
            legally-ordained number of seats,
            then that’s the final allocation.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Otherwise,
            try the procedure using another number to replace the Hare
            Quota, & call
            that new number the quota. Repeat the above procedure, using
            that new quota
            instead of the Hare Quota.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Find
            (by trial-&-error, or by some systematic-procedure) a
            quota such that the
            resulting number of seats allocated equals the
            legally-ordained number of
            seats.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>In
            the explanation below, “quota” means “quota” as defined
            above, or a number of
            seats equal to the quota.<span>  </span>The Hare Quote
            too is a “quota” as the term is used below.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>The
            object is for the average seats per quota to be unity,
            averaged over an
            interval between two integer numbers of quotas.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>q
            = quotas.<span>   </span>s = seats.<span>  </span>R = the
            round-up point between a & b.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Above
            the round-up point, s/q = b/q.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Below
            the round-up point, s/q = a/q.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>…because,
            below the round-up point a party would have a seats, &
            above the round-up
            point a party would have b seats.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Integrate
            b/q from R, to b.<span>  </span><span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Integrate
            a/q from a to R.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Add
            the two integrals together.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>To
            average over the interval, divide by b – a, the total amount
            of quota in the
            interval.<span></span></span></p>
        <p class="MsoNormal"><span>…
            <span></span></span></p>
        <p class="MsoNormal"><span>i.e.
            divide by 1.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Set
            that average s/q in the interval equal to 1, because it’s
            desired for it to be
            1.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Solve
            for R.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>R
            = (1/e)((b^b)/(a^a)).<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>That
            quantity is called (a special case of) the identric-mean of
            a & b.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Someone
            expressed concern that the unbias would be spoiled because
            the size of parties
            has a nonuniform probability-distribution. But he didn’t say
            why he thinks so,
            I don’t know what that probability-distribution has to do
            with anything said in
            the derivation.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>The
            identric-mean has been much discussed by mathematicians. <span> </span>But,from
            what was said in an academic paper (I’ll
            cite it below), it wasn’t proposed as the round-up point for
            an unbiased divisor-method
            before I proposed it here in 2006.<span>  </span>There
            were two academic journal-papers about that proposa, in
            versions starting in
            2008.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Here
            are the two academic-journal references:<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>“The
            Census and the Second Law: An Entropic Approach to Optimal
            Apportionment for
            the U.S. House of Representatives”.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>By
            Andrew E. Charman<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>It
            was in _Physics and Society__, or _Journal of Physics and
            Society_, in 2017. <span></span></span></p>
        <p class="MsoNormal"><span>(The
            latest version of the article was in 2017)<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>The
            citation said: <span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Cite
            as arXiv.1712.09440v3 [<a href="http://physics.soc.ph"
              moz-do-not-send="true">physics.soc.ph</a>]<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>I
            don’t know the page or Journal-volume & the
            issue-numberr, or if that
            information is encoded in the numbers above.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>The
            other paper was:<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>“Optimal
            Congressional Apportionment”<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>By
            Robert A. Agnew.<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>…in
            The American Mathematical Monthly, for 2008, volume 115,
            number 4 (April 2008).<span></span></span></p>
        <p class="MsoNormal"><span>…<span></span></span></p>
        <p class="MsoNormal"><span>Pp
            297-303<span>  </span>(7 pages)<span></span></span></p>
      </div>
      <br>
      <fieldset class="moz-mime-attachment-header"></fieldset>
      <pre class="moz-quote-pre" wrap="">----
Election-Methods mailing list - see <a class="moz-txt-link-freetext" href="https://electorama.com/em">https://electorama.com/em</a> for list info
</pre>
    </blockquote>
  </body>
</html>