<div dir="auto"><div><br><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Aug 23, 2023, 12:29 AM Toby Pereira <<a href="mailto:tdp201b@yahoo.co.uk">tdp201b@yahoo.co.uk</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div style="font-family:Helvetica Neue,Helvetica,Arial,sans-serif;font-size:13px"><div></div>
        <div dir="ltr">But of course, as with STAR, any complex add-on to the method is unlikely to ever be adopted, regardless of how much better it is in theory...</div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">When an improvement like this one is suggested along with examples of the problem it fixes and an explanation of why those examples were not just lucky flukes ... why am I always surprised at the resistance to any thought about the possibility of change?</div><div dir="auto"><br></div><div dir="auto">There has to be a better explanation than pure obstinacy ... right?</div><div dir="auto"><br></div><div dir="auto">fws </div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div style="font-family:Helvetica Neue,Helvetica,Arial,sans-serif;font-size:13px"><div dir="ltr">Toby</div><div><br></div>
        
        </div><div id="m_-7140212738267861014ydp8e6af83byahoo_quoted_3112589713">
            <div style="font-family:'Helvetica Neue',Helvetica,Arial,sans-serif;font-size:13px;color:#26282a">
                
                <div>
                    On Wednesday, 23 August 2023 at 06:59:06 BST, C.Benham <<a href="mailto:cbenham@adam.com.au" target="_blank" rel="noreferrer">cbenham@adam.com.au</a>> wrote:
                </div>
                <div><br></div>
                <div><br></div>
                <div><div id="m_-7140212738267861014ydp8e6af83byiv3464255226"><div>
    <p>Forest,<br clear="none">
      <br clear="none">
      I'm glad you approve.<br clear="none">
      <br clear="none">
      </p><blockquote type="cite">
        <div>So if a voter was giving out too much approval
          by approving below one of the mandatory semi-finalists, the
          method fixes that faux pas for free!</div>
        <div><br clear="none">
        </div>
      </blockquote>
      <br clear="none">
      Also the voter might not be making the innocent "mistake" of
      risking the IRV winner being defeated in the final by a candidate
      they like less, but<br clear="none">
      could be trying a relatively easy and tempting Push-over strategy.<br clear="none">
      <br clear="none">
      Chris<br clear="none">
      <br clear="none">
    
    <div>On 23/08/2023 8:54 am, Forest Simmons
      wrote:<br clear="none">
    </div>
    <blockquote type="cite">
      </blockquote></div><div><div>
        <div><br clear="none">
          <br clear="none">
          <div>
            <div dir="ltr">On Mon, Aug 21, 2023, 9:36
              AM C.Benham <<a shape="rect" href="mailto:cbenham@adam.com.au" rel="nofollow noreferrer" target="_blank">cbenham@adam.com.au</a>>
              wrote:<br clear="none">
            </div>
            <blockquote style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><br clear="none">
              This is I think more appealing and streamlined than my
              earlier version.<br clear="none">
              <br clear="none">
              *Voter strictly rank from the top however many candidates
              they wish.<br clear="none">
              <br clear="none">
              Also they can mark one candidate as the highest ranked
              candidate they <br clear="none">
              approve.<br clear="none">
              <br clear="none">
              Default approval is only for the top-ranked candidate.<br clear="none">
              <br clear="none">
              Determine the IRV winner.<br clear="none">
              <br clear="none">
              On ballots that approve the IRV winner, approval for any
              candidate or <br clear="none">
              candidates<br clear="none">
              ranked below the IRV winner is withdrawn.<br clear="none">
              <br clear="none">
              Elect the pairwise winner between the (thus modified)
              approval winner <br clear="none">
              and the IRV<br clear="none">
              winner.*<br clear="none">
            </blockquote>
          </div>
        </div>
        <div><br clear="none">
        </div>
        <div>So if a voter was giving out too much approval
          by approving below one of the mandatory semi-finalists, the
          method fixes that faux pas for free!</div>
        <div><br clear="none">
        </div>
        <div>What if the approval cutoff were simply moved
          adjacent to the IRV winner?</div>
        <div><br clear="none">
        </div>
        <div>That would probably give the IRV winner's
          strongest defeater too much help, and wrest too much control
          of the approval lever from the sovereign voters.</div>
        <div><br clear="none">
        </div>
        <div> It looks like you are treating the malady with
          the minimal effective dose of the right medicine!</div>
        <div><br clear="none">
        </div>
        <div>Great! </div>
        <div><br clear="none">
        </div>
        <div>Who will spread the good news?</div>
        <div>
          <div>
            <blockquote style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
              <br clear="none">
              This works fine in the same way as the earlier version in
              the example <br clear="none">
              given to talk<br clear="none">
              about Minimal Defense and Chicken Dilemma.<br clear="none">
              <br clear="none">
              It is more Condorcet efficient than normal IRV, and meets
              (or comes <br clear="none">
              close enough<br clear="none">
              to meeting) appropriately modified versions of the LNHs
              and Minimal Defense<br clear="none">
              and Chicken Dilemma.<br clear="none">
              <br clear="none">
              49 A  (sincere might be A>B)<br clear="none">
              24 B   (sincere might be B>C)<br clear="none">
              27 C>B<br clear="none">
              <br clear="none">
              If the C voters B>A preference is strong they can by
              approving B avoid <br clear="none">
              regret for not Compromising.<br clear="none">
              <br clear="none">
              Then the final pairwise comparison will be between B and A
              and B will win.<br clear="none">
              <br clear="none">
              But if they are more concerned about not letting the B
              voters steal the <br clear="none">
              election from them by possible Defection strategy then
              they can do that by not <br clear="none">
              approving B.<br clear="none">
              <br clear="none">
              49 A>C>>B<br clear="none">
              48 B>>C>A<br clear="none">
              03 C>A>>B<br clear="none">
              <br clear="none">
              Say this is for a seat in Parliament, and the voters have
              been <br clear="none">
              accustomed to using FPP,<br clear="none">
              IRV or Top-Two Runoff. It would cross the mind of no-one
              that the <br clear="none">
              "Condorcet winner"<br clear="none">
              C should defeat the IRV (and FPP and even Approval) winner
              A.<br clear="none">
              <br clear="none">
              But according to Condorcet advocates the B voters should
              or could be <br clear="none">
              regretting no getting an outcome they somewhat prefer by
              all top voting C.<div id="m_-7140212738267861014ydp8e6af83byiv3464255226yqtfd39229"><br clear="none">
              <br clear="none">
              Well with this system the B and C voters together can
              "fix" this without <br clear="none">
              anyone betraying their favourites or reversing any sincere
              preferences simply by all of <br clear="none">
              them approving C and not A.  Then the final pairwise
              comparison will be between C and A <br clear="none">
              with C winning.<br clear="none">
              <br clear="none">
              Chris Benham<br clear="none">
              <br clear="none">
            </div></blockquote><div id="m_-7140212738267861014ydp8e6af83byiv3464255226yqtfd58011">
          </div></div><div id="m_-7140212738267861014ydp8e6af83byiv3464255226yqtfd35658">
        </div></div><div id="m_-7140212738267861014ydp8e6af83byiv3464255226yqtfd95548">
      </div></div><div id="m_-7140212738267861014ydp8e6af83byiv3464255226yqtfd29615">
    
  </div></div></div></div>
            </div>
        </div></div></blockquote></div></div></div>