<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p><br>
    </p>
    <div class="moz-cite-prefix">On 18/05/2023 07:29, Richard Lung
      wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:cfb157b0-3c94-0b5a-406b-66d05cd49603@ukscientists.com">
      <meta http-equiv="content-type" content="text/html; charset=UTF-8">
      <p><br>
      </p>
      <p><!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:ApplyBreakingRules/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:UseFELayout/>
  </w:Compatibility>
  <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
 </w:WordDocument>
</xml><![endif]--><!--[if gte mso 10]>
<style>
 /* Style Definitions */
 table.MsoNormalTable
        {mso-style-name:"Table Normal";
        mso-tstyle-rowband-size:0;
        mso-tstyle-colband-size:0;
        mso-style-noshow:yes;
        mso-style-parent:"";
        mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
        mso-para-margin:0cm;
        mso-para-margin-bottom:.0001pt;
        mso-pagination:widow-orphan;
        font-size:10.0pt;
        font-family:"Times New Roman";
        mso-fareast-font-family:"Times New Roman";}
</style>
<![endif]--> </p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Representation form of Godel sentence and Binomial
          Meek</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""> </span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">A Kurt Godel sentence is of the form: This
          sentence is unprovable.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Its representation form would be: Representation
          is unprovable. Of which its truth is simply proved.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">The proof is that representation is a contingent
          relation. Innumerable chance factors, known and unknown,
          influence the voters choice of representatives, which is thus
          indeterminate, beyond not always reliable approximations.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">A determinate analysis cannot be deduced from an
          indeterminate basis. There is no observable “collective
          consciousness” or “divine right” of representation.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">The Godel sentence that representation is
          unprovable must, therefore, be true. According to the Godel
          Incompleteness theorem (completeness is inconsistent with
          consistency) this follows from a formal (election) system that
          is consistent. </span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""> </span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">However, the generality of election systems are
          complete, in their election to all the seats. But they are
          inconsistent two-truth systems, in their differing election
          counts to their exclusion counts.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">The exception to the generality is Binomial STV.
          An acceptable alternative name for this election method is
          Binomial Meek (method). This is because Binomial STV uses Meek
          method of surplus transfer, not only for the election count,
          but also for the exclusion count. The two counts are
          symmetrical, with the order of preference counted in opposite
          directions. The exclusion count is an iteration of the
          election count, with the preference order reversed.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">The over-all count procedure has to be incomplete
          however, because abstentions remain to be counted, in order to
          establish the degree to which voters like or dislike the
          candidates, from the relative importance of abstentions in the
          election count and the exclusion count. </span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Completeness, in the count, requires conservation
          of (preference) information.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Whereas, the generality of voting methods leave
          out abstentions, as a (consistent) source of information, or
          bench-mark, of the true weight of support for, or
          disenchantment with candidates.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">The guaranteed complete election of all the
          candidates is at the expense of complete information
          conservation. This amounts to an inequitable count of
          preferences which violates consistency.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""> </span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Thus, Binomial STV or Binomial Meek method
          consistency of election and exclusion counts has also to be
          complete with respect to conservation of preferential
          information, or else it would not be consistent, in that
          respect.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">This suggests to mathematicians that the
          incompleteness theorem needs qualification, with regard to
          degrees of completeness. For, it may be the case, that just as
          there are degrees of infinities, so there may be degrees of
          completeness. So, it is true that Binomial STV is consistent
          of election and exclusion counts, and incomplete with respect
          to always filling all the seats. </span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">But it also seems to be true that Binomial STV has
          to be complete with respect to conservation of information or
          it would be inconsistent in that respect. In qualification of
          the incompleteness theorem, it would seem that some degree of
          completeness is required for consistency, while allowing for
          another degree of incompleteness.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""> </span><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">(Five Golden Rules, by John L Casti)</span> </p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Regards,</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Richard Lung.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""><br>
        </span></p>
    </blockquote>
  </body>
</html>