<div dir="ltr">I take that back -
even if it always chooses an uncovered candidate, the method is not totally independent of covered alternatives.<div>In this 4-candidate cycle example:</div><div><br></div><div>8: A>B>C>D</div><div>9: B>D>A>C</div><div>12: C>D>A>B</div><div><br></div><div>Landau set is {A,B,D} as B covers C (and gets their 1st preferences added to the score), but C owns all their 1st preferences at the expense of D. Eliminating C in the first round doesn't happen because D would gain too much at the expense of B. A gets eliminated instead, and eventually B wins.</div><div><br></div><div>If Landau//[This Method] was used instead, D would be the winner.</div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">niedz., 23 kwi 2023 o 14:43 Filip Ejlak <<a href="mailto:tersander@gmail.com">tersander@gmail.com</a>> napisał(a):<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Thank you! But a little clarification - in the score definition I meant "<i>pairwise beaten by all candidates that pairwise beat X</i>" as in "<i>Y has to be beaten by each and every candidate that beats X</i>", so it's just a covering relation. Still, it does seem that the uncovered candidates should be the last to be eliminated.<div><div><br></div></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">niedz., 23 kwi 2023 o 01:03 Forest Simmons <<a href="mailto:forest.simmons21@gmail.com" target="_blank">forest.simmons21@gmail.com</a>> napisał(a):<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto"><div>Very Good ... and nice explanation!<br><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sat, Apr 22, 2023, 11:11 AM Filip Ejlak <<a href="mailto:tersander@gmail.com" target="_blank">tersander@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">Ok, after trying out a few things I found something that looks
promising in terms of passing all of ISDA, DMTCBR, Cloneproofness and, I hope, Monotonicity. The scoring rule is similar to Friendly Cover (but without
subtracting fpC); the elimination rule is a bit atypical.</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">The definition:</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">"<b>Let X's score be the sum of 1st preferences of
candidates that are pairwise beaten by all candidates that pairwise beat X.</b></span></p></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">In friendly parlance ... X's score is the sum of the first preference counts of all the friends of all of the enemies of X.</div><div dir="auto"><br></div><div dir="auto">Now suppose X' covers X. Then enemies(X') is a subset of enemies(X), and so friends of enemies of X' is a subset of friends of enemies of X ... which gives X' a lower score than X.</div><div dir="auto"><br></div><div dir="auto">So argminScore(X) always contains an uncovered candidate ... which you probably already mentioned ... I haven't read all of the posts in this thread yet (sorry about that).</div><div dir="auto"><br></div><div dir="auto">-fws</div><div dir="auto"><br></div><div dir="auto"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%"><b> In
each round eliminate such a candidate that the sum of the eliminated
candidate's score and the greatest score growth caused by the elimination is
minimized</b>."<b></b></span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">The growth-minimizing part works for at least two reasons: 1)
It reinforces the behaviour we would expect in a situation with no cycles, when
an elimination shouldn't cause a positive score growth (if an eliminated
candidate was worse than X, then its 1st preferences were already included in
X's score). 2) In cycle situations it should benefit candidates that already
have a high score (because letting a low-score candidate achieve some score
level is less preferable to letting a high-score candidate achieve such level).</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">Also notice that the eliminated candidate's score is equal to
the greatest score decrease caused by the elimination, so there is a nice
symmetry between these two things we sum. It also means we can express the
elimination rule in a more elegant way ("<b>eliminate such a candidate
that the greatest score distance change between any two candidates is minimized</b>"),
but perhaps the former definition makes it more clear why it works.</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">It seems to me that the incentive to eliminate a non-Smith
candidate because of a low score should always outweigh the incentive to
eliminate a Smith candidate because of a low score growth, so all non-Smith
candidates should be eliminated first.</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">Proof that the 3-candidate case is equivalent to fpA-fpC:</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">If there is no cycle, it is trivial as both methods are
Condorcet. If there is an A>B>C>A cycle, then we look at the possible
eliminations. Let "a" be the number of A's 1st preferences, "b"
of B, "c" of C.</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">- if
C is eliminated, A's score increases by b+c and A wins with B</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt">- if
A is eliminated, B's score increases by a+c and B wins with C</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt">- if
B is eliminated, C's score increases by a+b and C wins with A</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">We add eliminated scores to score growths in order to find
the optimal elimination. If 2c+b is the lowest, A wins. If 2a+c is the lowest,
B wins. If 2b+a is the lowest, C wins.</span></p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif">
</p><p class="MsoNormal" style="text-align:justify;margin:0cm 0cm 8pt;line-height:107%;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;line-height:107%">Notice that min(2c+b, 2a+c, 2b+a) = min(2c+b-(a+b+c), 2a+c-(a+b+c),
2b+a-(a+b+c)) = min(c-a, a-b, b-c) = max(a-c, b-a, c-b). So we get the fpA-fpC
formula, QED.</span></p></div>
----<br>
Election-Methods mailing list - see <a href="https://electorama.com/em" rel="noreferrer noreferrer" target="_blank">https://electorama.com/em</a> for list info<br>
</blockquote></div></div></div>
</blockquote></div>
</blockquote></div>