<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p><br>
    </p>
    <div class="moz-cite-prefix">On 19/04/2023 09:44, Richard Lung
      wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:84b5cb31-1b43-96bb-5cee-b84222b30178@ukscientists.com">
      <p><!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:ApplyBreakingRules/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:UseFELayout/>
  </w:Compatibility>
  <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
 </w:WordDocument>
</xml><![endif]--><!--[if gte mso 10]>
<style>
 /* Style Definitions */
 table.MsoNormalTable
        {mso-style-name:"Table Normal";
        mso-tstyle-rowband-size:0;
        mso-tstyle-colband-size:0;
        mso-style-noshow:yes;
        mso-style-parent:"";
        mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
        mso-para-margin:0cm;
        mso-para-margin-bottom:.0001pt;
        mso-pagination:widow-orphan;
        font-size:10.0pt;
        font-family:"Times New Roman";
        mso-fareast-font-family:"Times New Roman";}
</style>
<![endif]--> </p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">The British Labour Party Intermediate Plant Report
          (betimes on their website) cited Riker for non-monotonicity of
          STV.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">When an election has no more surplus votes to
          transfer, the trailing candidate is eliminated to redistribute
          their vote to next preferences.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">A scenario can be imagined, in which a contender
          for election receives more votes, but this results in the
          elimination of a less favorable candidate, with an adverse,
          instead of a positive, effect on the contender.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">In theory, conventional STV is indeed
          non-monotonic. In practise, STV elects mainly first
          preferences, especially with more seats, in the multi-member
          constituency. This robustness may be explained because the
          Riker test example, for instance, is not a typical STV
          election with surplus transfers. Rather it is a purely
          eliminative count of candidates with the least first
          preferences.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">This consideration also suggests, in my personal
          opinion, that STV could be made monotonic, if the irrational
          method of elimination were discarded. It would be possible to
          use quota election, with surplus transfer, also for an
          “exclusion quota,” by conducting exactly the same
          (symmetrical) count, but with the preferences counted in
          reverse order. This “Binomial” STV (a bi-nomial count) would
          be a (consistent) one-truth system, which satisfies the truth,
          that one voters preferences may be another voters
          unpreferences, and therefore cannot logically be treated
          differently.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Polarising candidates might win both an election
          quota and an exclusion quota. This would be a case of what
          Forest Simmons calls “Schrödinger’s candidate” (after
          Schrödinger’s cat, deemed, in quantum theory, to be both alive
          and dead!) The result could be settled, one way or the other,
          by a Quotient of the exclusion quota to the election quota.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">The relative importance of election or exclusion,
          to the voters, could be measured by the counting of
          abstentions. This might cause one seat, or more, to remain
          unfilled. This greater use of preference information would
          satisfy the fundamental principle of the conservation of
          information, which is breached by candidate elimination rules.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">“Binomial STV” thus conforms to the Incompleteness
          theorem. “Godel showed that mathematics could not be both
          complete and consistent…” (James Gleick </span><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""><span
            style="font-size:16.0pt;font-family:"Arial Rounded MT
            Bold"">“The Information.” Fourth estate, 2012. Chapter
            7.)</span></span><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""></span><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""> For, Binomial STV election and exclusion of
          candidates follows a consistent count. But its counting of
          abstentions may leave an incomplete election to all the seats.
          Whereas, practically all conventional election methods seek to
          completely fill all the seats, but use variously inconsistent
          election and exclusion rules.</span><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""><br>
        </span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Regards,</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold"">Richard Lung.</span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""><br>
        </span></p>
      <p class="MsoNormal"><span
          style="font-size:16.0pt;font-family:"Arial Rounded MT
          Bold""><br>
        </span></p>
    </blockquote>
  </body>
</html>