<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p><br>
    </p>
    <p><!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:ApplyBreakingRules/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:UseFELayout/>
  </w:Compatibility>
  <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
 </w:WordDocument>
</xml><![endif]--><!--[if !mso]><object
 classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object>
<style>
st1\:*{behavior:url(#ieooui) }
</style>
<![endif]--><!--[if gte mso 10]>
<style>
 /* Style Definitions */
 table.MsoNormalTable
        {mso-style-name:"Table Normal";
        mso-tstyle-rowband-size:0;
        mso-tstyle-colband-size:0;
        mso-style-noshow:yes;
        mso-style-parent:"";
        mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
        mso-para-margin:0cm;
        mso-para-margin-bottom:.0001pt;
        mso-pagination:widow-orphan;
        font-size:10.0pt;
        font-family:"Times New Roman";
        mso-fareast-font-family:"Times New Roman";}
</style>
<![endif]--> </p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">STV & Incompleteness theorem continued.<br>
      </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""><br>
      </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">The voting systems of the world aim for
        completeness. In other words, official voting systems aim to
        complete the election of all the available representatives. This
        is achieved despite inconsistencies in those voting methods.
        This is in accord with the Incompleteness theorem, which applies
        to algorithms in general and not merely democratic or would-be
        democratic procedures.</span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">Thus, the incompleteness theorem is sufficient to
        explain the democratic inconsistencies of official elections. </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">The incompleteness theorem explains Binomial STV, in
        contrasting fashion. STV^, contrary to official methods, is a
        consistent system but an incomplete one. The incompleteness,
        however, is justified, not by logic, but by the evidence that
        voters may be incompletely satisfied with candidates put before
        them.</span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">Therefore, it is not necessary to postulate an
        Impossibility theorem, to explain inconsistencies in democratic
        procedure. Indeed, Binomial STV shows that democratic procedure
        can be a consistent, tho incomplete, election to all the
        vacancies.</span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""> </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">The negativity of the Incompleteness theorem is
        echoed in the so-called Impossibility theorem, theorem Arrow. A
        moral for the incompleteness theorem, man cannot live by logic
        alone, also demonstrates that mathematics is not enough to study
        elections. Mathematicians do not live in a logical vacuum but
        within a social context. The nineteen fifties was a particularly
        unfortunate time for electoral democracy in the </span><span
        style="font-size: 16.0pt;font-family:"Arial Rounded MT
        Bold"">USA</span><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">, when the monopolistic city machines already almost
        exterminate STV/PR. </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">The Impossibility theorem attempts to show that an
        electoral system, based on a few reasonable principles,
        nevertheless falls into inconsistencies. However, the “skeleton
        key” or all-purpose epitome of election systems, set-up for
        analysis, is itself a flawed model, indeed an inconsistent
        correspondence of a vote to a count. So it is “impossible” to
        see how anything but inconsistencies of voting method could be
        deduced from the impossibility theorem. Kenneth Arrow adopts a
        multi-preference vote with a single majority count. But a single
        majority count follows from a single preference X-vote. And a
        ranked choice vote, an ordered choice or multi-preference vote,
        1, 2, 3,…, elects a multi-majority count, of 1, 2, 3,…, Members
        per district. </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">A form of Alternative Vote, chosen by Arrow, may
        push some voters to elect their fifth preference, say, to a
        single-member monopoly. But that is not the purpose of many
        orders of choice, at all. Rather, it is to proportionally elect
        mostly highly ranked choices, mainly first preferences, to a
        district of many members. This may be called the Andrae
        principle, after the original inventor of vote-count
        consistency.</span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""> </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">Many prestigious demonstrations, of the
        Impossibility theorem, appear to owe more to an Arbiter of
        Fashion, such as a bountiful prize-giving committee, than a
        credible proof. Generally, they consist of a handful of
        single-member voting methods (which monopolies are the least
        democratic) whose results differ, on the differing exactness of
        their respective counts. The impossibility theorem, as
        characterised, is not a theorem on the inconsistency of election
        methods. It is merely a demonstration of greater or lesser
        statistical accuracy in a count.</span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">These alleged impossibilities of democracy amount to
        an academic echo of the Machine politics, that banished
        “effective voting” from American city elections, as it is
        banished from scientific consensus. </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">The New York Times published a petition of over 200
        academics, calling for Congress to be elected by multi-member
        personal proportional representation, according to Voter Choice
        Massachusetts.</span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">Regards,</span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold"">Richard Lung.</span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""><br>
      </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""><br>
      </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""> </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""> </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""> </span></p>
    <p class="MsoNormal"><span
        style="font-size:16.0pt;font-family:"Arial Rounded MT
        Bold""> </span></p>
  </body>
</html>