<div dir="auto">Time for an example or two.<div dir="auto"><br></div><div dir="auto">48 C</div><div dir="auto">28 A>B</div><div dir="auto">24 B</div><div dir="auto"><br></div><div dir="auto">A>B 28 to 24</div><div dir="auto">B>C 52 to 48</div><div dir="auto">C>A 48 to 28</div><div dir="auto"><br></div><div dir="auto">The respective minPS scores are their Top counts 28, 24, &48</div><div dir="auto">So C is the offensive champ with MaxminPS(C)=48.</div><div dir="auto"><br></div><div dir="auto">MaxPO(C)=52 (from B)</div><div dir="auto"><br></div><div dir="auto">A and B are tied for minMaxPO at 48 from C. This tie is broken by looking at the other PO scores 24 and 28, respectively. So A is the minMaxPO candidate (defensive champ) with MaxPO(A)=48+24epsilon, ehich is less than MaxPO(B)=48+28epsilon, and (as already noted) less than MaxPO(C)=52.</div><div dir="auto"><br></div><div dir="auto">Since the Offensive Champ C beats the Defensive Champ A, (48 to 28) and there is no undefeated candidate, our tournament method elects C.</div><div dir="auto"><br></div><div dir="auto">Now let's look at ...</div><div dir="auto"><br></div><div dir="auto">a A>B(sincere A>C)</div><div dir="auto">b B>C</div><div dir="auto">c C>A</div><div dir="auto"><br></div><div dir="auto">If the A faction is largest its burial of the sincere CW C pays., but the because A is both the Offensive Champ and the Defensive Champ with minPS(A)=a.</div><div dir="auto"><br></div><div dir="auto">But suppose C takes the customary sincere CW precaution of bullet voting:</div><div dir="auto"><br></div><div dir="auto"><div dir="auto" style="font-family:sans-serif">a A>B</div><div dir="auto" style="font-family:sans-serif">b B>C</div><div dir="auto" style="font-family:sans-serif">c C</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">Then the respective minPS scores are a, b, and c.</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">Continuing our assumption that enabled the A faction to bury C with impunity ... namely a>max(b,c), we see that A retains its status as Offensive Champ with minPS(A)=a>max(b,c).</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">The MaxPO's are now ...</div><div dir="auto" style="font-family:sans-serif">(b+c)=MaxPO(A), a=MaxPO(B), and (a+b)=MaxPO(C).</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">The min of these is a=MaxPO(B). So B is the Defensive Champ.</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">The pairwise contest between the two champs is A vs B ... which still lets the A faction get away with its burial of the sincere CW.</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">We see that under this method the sincere CW is at the mercy of the largest faction.</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">So despite the nice sports tournament heuristic... we cannot endorse this method!</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">It's a good thing we have better methods that are conceptually and operationally just as simple ... if not as innately appealing to sports enthusiasts.</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">Is there a better pair of fall back candidates to choose between when there is no ballot CW?</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">How about the implicit approval candidate versus the Max Equal Top candidate?</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">The beauty of this class of methods is only one pass through the ballots, as long as the two contenders are kept simple enough.</div><div dir="auto" style="font-family:sans-serif"><br></div><div dir="auto" style="font-family:sans-serif">-Forest</div><div dir="auto" style="font-family:sans-serif"><br></div></div><div dir="auto"><br></div><div dir="auto"><br></div><div dir="auto"><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Mar 21, 2023, 9:00 PM Forest Simmons <<a href="mailto:forest.simmons21@gmail.com">forest.simmons21@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="auto"><div dir="auto"><font face="sans-serif">Here's my suggestion for choice of tournament champion:</font></div><div dir="auto"><br></div><div dir="auto">Lacking an undefeated team, elect the pairwise victor of the defensive and offensive champs.</div><div dir="auto"><br></div><div dir="auto">In the sports context the natural choices of offensive and defensive champs, respectively are the team with the greatest point total, and the team with the smallest opposing team points total, both totalled for the entire tournament.</div><div dir="auto"><br></div><div dir="auto"><span style="font-family:sans-serif">In the election context the natural choices of offensive and defensive champs, respectively, are the candidate with the greatest vote total, and the candidate with the smallest opposing vote total ... noth totalled for all of the direct democratic matchups between pairs of candidates.</span><br></div><div dir="auto"><span style="font-family:sans-serif"><br></span></div><div dir="auto"><span style="font-family:sans-serif">However, in the context of elections the presence of clone candidates will unfairly distort these results. This distortion is easily overcome by the following modification:</span></div><div dir="auto"><br></div><div dir="auto">The Offensive Champ is the candidate that can honestly say "everybody else had a matchup where they got fewer votes than I did in my worst matchup."</div><div dir="auto"><br></div><div dir="auto">The Defensive Champ is the candidate that can honestly boast, "Every other candidate had a matchup where their opponent got more votes than mine did in my worst matchup."</div><div dir="auto"><br></div><div dir="auto">How do we get the matchup votes for candidates X and Y in their direct democratic compsrison?</div><div dir="auto"><br></div><div dir="auto">They are simply the transferred votes that they would have if all of the other candidates were eliminated.</div><div dir="auto"><br></div><div dir="auto">Candidate X would get one vote from every ballot on which X is ranked ahead of Y.</div><div dir="auto"><br></div><div dir="auto">Similarly, Y's vote total in this contest is the number of ballots that rank Y ahead of X.</div><div dir="auto"><br></div><div dir="auto">Now, some technical notes for the election technicians ... everybody else thanked with heartfelt appreciation for their participation ... and excused:</div><div dir="auto"><br></div><div dir="auto">The Pairwise Support Matrix is the matrix whose entry PS(j, k) in column k of row j ... is the number of ballots on which candidate j is ranked ahead of candidate k.</div><div dir="auto"><br></div><div dir="auto">In each row j, circle the smallest entry ... m(j) = min over k of PS(j,k).</div><div dir="auto"><br></div><div dir="auto">In each column k, highlight its largest entry M(k) = Max over j of PS(j, k).</div><div dir="auto"><br></div><div dir="auto">Let J be argMax m(j), obtained by looking at the row number of the largest circled entry in the matrix. </div><div dir="auto"><br></div><div dir="auto">Candidate J is the Offensive Champ.</div><div dir="auto"><br></div><div dir="auto">Let K be argmin M(k), obtained by looking at the column number of the smallest highlighted matrix entry. </div><div dir="auto"><br></div><div dir="auto">Candidate K is the Defensive Champ.</div><div dir="auto"><br></div><div dir="auto">If PS(J, K) is larger than</div><div dir="auto">PO(J, K)=PS(K,J), then candidate J, the Offensive Champ defeats the Defensive Champ K.<br></div><div dir="auto"><br></div><div dir="auto">If PS(J,K) is less than PO(J,K), then the Offensive Champ J is defeated by the Defensive Champ K.</div><div dir="auto"><br></div><div dir="auto">(Otherwise candidates J and K are tied)</div><div dir="auto"><br></div><div dir="auto">-Forest</div></div>
</blockquote></div>