<div dir="auto"><div>Reminds me of the professor who decided to mend his ways when a student complained about not enough writing on the board for students taking notes. At the end of a long explanation of quadratic reciprocity, remembering his promise of more detailed notes, he says, "... which is as easy as one plus one equals two," ... and then writes 1+1=2 on the black board.</div><div dir="auto"><br></div><div dir="auto">For fpA-sumfpC ... I would have to say it came out of an attempt to de-clone Copeland, where the fpA term was found empirically to restore momotonicity to an educated guess that didn't quite work.... or something like that. Not very inspiring to the students.</div><div dir="auto"><br></div><div dir="auto">When we're lucky, once we get the right formula, we can see a shortcut to it that would have saved us tons of time and agony if only we had seen it earlier.</div><div dir="auto"><br></div><div dir="auto">We cannot blame the students for not appreciating the shortcuts.</div><div dir="auto"><br></div><div dir="auto">It reminds me of sci-fi stories about infrastructure that starts crumbling centuries after all its engineers have died off.</div><div dir="auto"><br></div><div dir="auto">Patience!</div><div dir="auto"><br></div><div dir="auto"><br><br><div class="gmail_quote" dir="auto"><div dir="ltr" class="gmail_attr">El dom., 5 de jun. de 2022 2:43 a. m., Kristofer Munsterhjelm <<a href="mailto:km_elmet@t-online.de">km_elmet@t-online.de</a>> escribió:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">On 05.06.2022 03:14, Forest Simmons wrote:<br>
> Traditional math exposition, whether text book, lecture, journal<br>
> article, or monograph,  tends to have a top down deductive logical<br>
> structure that belies all of the messy trial and error scratch work that<br>
> accompanied the creative process.<br>
> <br>
> This was the style of Gauss ... unveil the finished work in all of its<br>
> polished, deductive logical glory, without any hint of the inductive<br>
> scaffolding or chisel marks that went into the finished work.<br>
<br>
This is a little bit off topic, but one thing I wished someone would've<br>
told me at university is just how difficult it is to come up with the<br>
one trick that makes a proof work.<br>
<br>
You tend to see (in mathematics/compsci papers at least) something like:<br>
<br>
"We wish to reduce minimizing the spectral norm of this matrix function<br>
of M to a convex second order cone program, which we can do by<br>
augmenting the input matrix M like so<br>
<br>
               0   I<br>
        W =    M   M^T - I<br>
<br>
and solving the associated optimization program, minimize f^Tx subject<br>
to ||Wx||_2 < b as follows..."<br>
<br>
There's then a brief proof of why just this choice of W works, but the<br>
authors might as well have pulled the transformation out of a hat. The<br>
problem is that this makes everything seem so easy: you just proceed<br>
through the steps and the intended relation falls out at the end.<br>
<br>
Then try to do it yourself in a novel setting and it's not so easy anymore.<br>
<br>
Maybe students just want to know how, but I would say any aspiring<br>
researcher would also want to know why... or at least in my case, know<br>
that it's perfectly normal to be hitting one's head against a wall for a<br>
long time before finding just *what* trick to use!<br>
<br>
More generally, some problems are much easier to phrase than they are to<br>
solve. (Particularly number theory, hence Barry Mazur's quote.) I think<br>
providing an intuition of just what kind of problems are deceptive or<br>
merely hard would be a good idea, although I'm not sure how to do it :-)<br>
<br>
-km<br>
</blockquote></div></div></div>