<div dir="auto"><div><br><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">El mar., 10 de may. de 2022 11:09 a. m., Ted Stern <<a href="mailto:dodecatheon@gmail.com">dodecatheon@gmail.com</a>> escribió:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div dir="ltr">Comments below:</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, May 10, 2022 at 10:41 AM Forest Simmons <<a href="mailto:forest.simmons21@gmail.com" target="_blank" rel="noreferrer">forest.simmons21@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto">This is an aggregate method that can be taken apart and reassembled to fit the circumstances.<div dir="auto"><br></div><div dir="auto">The longest path from start to finish begins with ranked choice ballots. </div><div dir="auto"><br></div><div dir="auto">Step 1 converts the ballots to 3-slot ballots. This step can be accomplished in two main ways (detailed presently) or bypassed entirely by getting direct 3-slot approval input as in Ted Stern's Approval Sorted Margins, for example.</div></div></blockquote><div><br>I would credit you as the originator of Approval Sorted Margins. My modification was Preference Approval Sorted Margins, with 3 approval slots of Preferred, Approved, Rejected.<br></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">Definite improvement over my version.</div><div dir="auto"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto"><div dir="auto"><br></div><div dir="auto">The first main way is to distinguish Top, Bottom, and Middle positions on the ranked ballots.</div><div dir="auto"><br></div><div dir="auto">The second main way is to give Top slot status to every candidate X on ballot B for which there is some candidate Y outranked by X, that defeats every candidate that outranks X. </div><div dir="auto"><br></div><div dir="auto">Bottom slot status goes to X if it is outranked by some Y that defeats every candidate that X outranks.</div><div dir="auto"><br></div><div dir="auto">Middle slot status goes to ranked candidates not assigned Top or Bottom status by the above rules.</div></div></blockquote><div><br></div><div>I'm not quite clear on the TMB slots. Could you give an example of this in a simple election, then apply the positions on an example ballot?<br></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">Think of Range or Score based on ballots where you rate/grade candidates on a scale of zero to two.</div><div dir="auto"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div><br>The unclear thing to me is whether the 3 slot approval is per-ballot or based on the overall pairwise array.<br></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">In this example each candidate's Top score is the percentage of ballots on which it was rated 2 or graded Top. Its bottom score is the percentage of ballots on which it was rated zero or not rated (i.e. truncated, abstained, left blank). The middle score is the percentage of ballots on which the candidate received a rating of one or a grade of Middle..</div><div dir="auto"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto"><div dir="auto"><br></div><div dir="auto">Step 2 is converting 3-slot Top, Middle, and Bottom tallies into Robert Bristow-Johnson's "peak approval" scores.</div><div dir="auto"><br></div><div dir="auto">Let t, m, & b be the respective slot values. Then the peak approval score is ...</div><div dir="auto">(t-b)/(2-t-b) or (t-b)/(1+m)</div></div></blockquote><div><br>To clarify, are t, b, and m the totals of individual ballot t/b/m scores from each ballot?<br></div></div></div></blockquote></div></div><div dir="auto"><br></div><div dir="auto">Yes, but I should have said fraction or percentage of the ballots ... so the formula would make sense. In that context 1=100percent.</div><div dir="auto"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto"><div dir="auto"><br></div><div dir="auto">with the David Gale value t-b as the tie breaker. </div><div dir="auto"><br></div><div dir="auto">Step 3. Do peak approval sorted margins, as in any other Sorted margins method.</div></div>
</blockquote></div></div>
</blockquote></div></div></div>