<div dir="ltr"><div dir="ltr"><div class="gmail_default" style="font-family:trebuchet ms,sans-serif;font-size:small"><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Jan 25, 2022 at 3:26 PM Kristofer Munsterhjelm <<a href="mailto:km_elmet@t-online.de">km_elmet@t-online.de</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Perhaps the better approach is to use MC or quasi MC. Or meet in the<br>
middle somehow, e.g. let f(A>B>C, A.x, A.y, B.x, B.y, C.x, C.y) be the<br>
fraction of voters who vote A>B>C when the candidates are at the given<br>
coordinates; then use billiard sampling to determine f, and sample using<br>
MC or a perturbed over the coordinates. This could perhaps be more<br>
accurate than using MC for both picking the candidate locations and<br>
counting voter proportions.<br>
</blockquote></div><div><br></div><div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small">I'm not familiar with billiard sampling. Is this it?</div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small"><a href="https://www.sciencedirect.com/science/article/pii/S037722171400280X">https://www.sciencedirect.com/science/article/pii/S037722171400280X</a></div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small">I have an idea that might be very naive, but here it goes. The problem is hard in part because you want to compute f(A>B>C) for every permutation of candidates. You could make a quicksort-like algorithm to iteratively partition the space:</div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small">1) Start with a population of V voters and C candidates spread in some N-dimensional space.</div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small">2) Select any two candidates {A,B}. Partition the voters based on whether they are in the A>B camp or the A<B camp. Now you have two disjoint groups. Partition each group based on where they fall on the {A,C} contest. Partition those based on where they fall on the {B,C} debate, and so on.</div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small">The total number of operations is V*C^2 which... can be a lot if V is large. But it might not be too bad if the alternative way of computing the volume of 1 set of preferences costs more than doing a simple {A,B} comparison V times. There might be some clever geometrical tricks to quickly classify some of the voters, but I can't think of any right now that is obviously faster.</div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small">Cheers,</div><div class="gmail_default" style="font-family:"trebuchet ms",sans-serif;font-size:small"><span style="font-family:Arial,Helvetica,sans-serif">--</span><br></div></div><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><font face="trebuchet ms, sans-serif">Dr. Daniel Carrera</font></div><div dir="ltr"><font face="trebuchet ms, sans-serif">Postdoctoral Research Associate</font></div><div><font face="trebuchet ms, sans-serif">Iowa State University</font></div></div></div></div></div></div></div></div></div></div></div>