<div dir="auto">Second try ...<br><br><div class="gmail_quote" dir="auto"><div dir="ltr">---------- Forwarded message ---------<br>From: Forest Simmons <<a href="mailto:forest.simmons21@gmail.com">forest.simmons21@gmail.com</a>><br>Date: jue., 14 de oct. de 2021 6:55 p. m.<br>Subject: Schrodinger's Candidate<br>To: EM <<a href="mailto:Election-methods@lists.electorama.com">Election-methods@lists.electorama.com</a>><br></div><br><br><div dir="auto">Just as Schrodinger's Cat remains in a superposition of two states (alive and dead) until the decisive resolution of its wave function into a definite eigenstate occasioned by an observational "measurement" disturbance (opening and inspecting the contents of the box), so also Schrodinger's Candidate remains in a superposition of Good/Bad, Winner/Loser, until the ballots are voted and tallied.<div dir="auto"><br></div><div dir="auto">In this method each voter chooses for each candidate a mark from the range ...</div><div dir="auto">Ultra Hyper Bad, Very Bad, Pretty Bad, Pretty Good, Very Good, and Super Dooper Good or UHB, VB, PB, PG, VG, and SDG, respectively... six judgments ... three each of negative and positive connotations that an English major could profitably standardize for our patriotic cause.</div><div dir="auto"><br></div><div dir="auto">We cannot avoid numbers forever ... at very least we need to tally the ballots for and against each candidate X..... accordingly for each of the three gradations gamma of goodness let B(X, gamma) be the number of ballots on which candidate X is graded Better than or equal to gamma ... and for each of the three gradations beta of badness, let W(X, beta) be the number of ballots on which X is graded Worse than or equal to beta.</div><div dir="auto"><br></div><div dir="auto">For each candidate X we form two polynomials in epsilon... one where the coefficients are the B for Better values, and another where the coefficients are the W for Worse values:</div><div dir="auto"><br></div><div dir="auto">P+ = Sum (k = 0, 1, 2) of </div><div dir="auto"> Gamma(k)*epsilon^k,</div><div dir="auto">and</div><div dir="auto"><br></div><div dir="auto">P- = Sum (k in 0, 1, 2) of</div><div dir="auto"> Beta(k)*epsilon^k</div><div dir="auto"><br></div><div dir="auto"><br></div><div dir="auto">Gamma(0, 1, 2 ) = PG, VG, SDG</div><div dir="auto">Beta(0, 1 ,2) = PB, VB, UHB</div><div dir="auto"><br></div><div dir="auto">For each X determine if P+ or P- is greater for positive infinitesimal epsilon.</div><div dir="auto"><br></div><div dir="auto">This reveals which candidates are Good and which are Bad after the "wave collapse"....</div><div dir="auto"><br></div><div dir="auto">To Be Continued ....</div><div dir="auto"><br></div><div dir="auto"><br></div><div dir="auto">Let P(X) = P</div><div dir="auto"><br></div><div dir="auto"><br></div></div>
</div></div>