<div dir="ltr">Kristofer,<br><br>I, too, find myself going back to the risk-neutral lottery-based definition of utility. I feel like it goes so naturally with "random ballot".<br><br>Suppose V1 has a ranking of A > B > C and V2 has a ranking of C > B > A. In random ballot, V1's vote becomes a lottery ticket that causes A to win and V2's vote becomes a lottery ticket that causes C to win. Let us ask when would V1 and V2 both agree to trade their "one chance of A winning and one chance of C winning" for "two chances of B winning".<br><br><br>We know we can say little about the "absolute" or "interpersonal" utilities of how U_V1(A), U_V1(B), and U_V1(C) compare to U_V2(A), U_V2(B), and U_V2(C).<br><br>But asking each voter to quantify exactly where B lies on the spectrum between A and C, as a number between 0 and 1, is completely meaningful (in the risk-neutral lottery paradigm).<br><br>Let b_1 = (U_V1(B) - U_V1(C)) / (U_V1(A) - U_V1(C))<br><br>Let b_2 = (U_V2(B) - U_V2(A)) / (U_V2(C) - U_V2(A))<br><br>(In other words, rescale each voter's utility so their favorite candidate is at 1.0 and their least favorite is at 0.0 and examine their utility estimations of B.)<br><br><br><br>If b_1 = 0.5 and b_2 = 0.5, we propose they trade "one chance of A winning and one chance of C winning" for "two chances of B winning". The voters are actually completely neutral toward this trade, though as an outsider I much prefer the lowered entropy. b_1 and b_2 would have to be strictly greater than 0.5 for both voters to be excited about the transaction.<br><br>It works for other fractions, too. If b_1 = 0.6 and b_2 = 0.4, the utility-neutral trade is "one chance of A winning and one chance of C winning" for "1.666 chances of B winning and 0.333 chance of C winning". (If b_1 > 0.6 and b_2 > 0.4, then the trade is positive-sum.)<br><br><br><br>Can we actually set up this market (declared-strategy style), let all voters submit their three-candidate ranking and a utility (between 0 and 1) for their middle candidate, then we simulate all the trades and come up with a final, optimal lottery?<br><br>A > B > C voters and C > B > A voters would trade with each other. A > C > B voters and B > C > A voters would trade with each other. B > A > C voters and C > A > B voters would trade with each other.<br><br>It seems obvious to me that in an election where 50% of the voters want A > B > C and 50% want C > B > A, if you can get a number from each voter on where B is on their scale from 0 to 1, that information is useful AND meaningful. I mean, if all the voters say 0.9 then clearly we should just elect B as the compromise candidate. And if all the voters say 0.1, then giving them a 50/50 lottery between A and C is probably the best we can do. Why should we decline to collect and use this "utility of the middle candidate" information?<br><br>How can we simulate those trades? Line up all the A > B > C voters in order of decreasing "B" utility and line up all the C > B > A voters in order of increasing "B" utility and match up the two lines somehow? What about the mismatch in length?<br><br><br><br>One problem I see is that whenever a transaction is perfectly fair, it is utility-neutral, and the two parties are indifferent to whether the trade actually happens. A trade that is positive-sum, on the other hand, has some surplus utility and we could be unfair about which voter captures it.<br><br>If b_1 = b_2 = 0.6, then trading "one chance of A and one chance of C" for any of the following would be utility-neutral or -positive for both voters:<br><br>- 1.666 chances of B winning and 0.333 chance of C winning<br>- 2 chances of B winning<br>- 1.666 chances of B winning and 0.333 chance of A winning<br><br>Obviously, as neutral election administrators, we should choose the middle option. But I think this illustrates the opportunity for strategic voting in this system. If you, as a voter, have perfect information about the other voters, maybe your utility for B is 0.6 and you see that you can decrease your declared utility for B to 0.400001 and still get a trade. It will be a trade the other person barely agrees to, and you'll maximize your utility, capturing all the surplus from the transaction.<br><br>Is there something else we could do as election administrators to make dishonesty less profitable? Does it depend on the way we line up and match up the opposing voters? If we always try to make sure that we match up voters with a "sum of compromise utility" that is greater than one but as small as possible, does that help somehow?<br><br>Perhaps in a large election, it will be difficult to know enough information about the other voters and the benefits will be small enough that voters will just be honest?<br><br>Or maybe we just discard the concept of matching up individual voters, look at all the data, and come up with a "market-clearing price" for turning A and C chances into B chances? Does that fix anything, or just leave a lot of positive-sum transactions unfulfilled?<br><br>Can it be generalized to more than three candidates?<br><br>~ Andy</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Aug 15, 2021 at 3:02 PM Kristofer Munsterhjelm <<a href="mailto:km_elmet@t-online.de">km_elmet@t-online.de</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Suppose we take the risk neutral lottery-based definition of utility as<br>
a basis for honesty. (That is, if you're indifferent between a 100%<br>
chance of choice X and a 70% chance of Y, 30% chance of Z, then your<br>
utility for X is equal to 0.7 * u(Y) + 0.3 * u(Z).)<br>
<br>
What kind of cardinal system could incentivize voters to report this<br>
kind of information? It seems very hard to do it with any of the broad<br>
IIA class (score for X is just a function of ratings for X, highest<br>
score wins, and increasing your rating for X never decreases X's chance<br>
of winning), because those methods encourage minmax strategy.<br>
<br>
Perhaps some kind of cumulative voting? There's Hay, but it sucks.<br>
<br>
The lottery definition above can't determine both a natural zero and<br>
unit value, because if you scale all utilities by some constant, the<br>
lottery equations remain the same. So any method that takes this kind of<br>
input should pass a kind of "irrelevance of constant scaling" property,<br>
which says that if every voter v scales his ballot by some (private)<br>
constant factor v_F, then the outcome remains the same.<br>
<br>
In a Range-type method, that means the system should scale every ballot<br>
so that one candidate is max rated and another is min rated (I think).<br>
This would probably lead to IIA because in a two-candidate election,<br>
you'd get majority rule (whichever candidate voter v prefers gets max<br>
rating, and the other one gets min rating).<br>
<br>
Maybe it's possible to preserve IIA, but I doubt it.<br>
<br>
Any thoughts on how a method with better "honesty" incentives could be<br>
designed for lottery-type cardinal ballots?<br>
<br>
-km<br>
----<br>
Election-Methods mailing list - see <a href="https://electorama.com/em" rel="noreferrer" target="_blank">https://electorama.com/em</a> for list info<br>
</blockquote></div>