<div dir="ltr">What if worst score is zero?<div><br></div><div>What if best and worst score are both zero?</div><div><br>What if best and worst scores are both small, but Log(R) is relatively large?<br><br>WLOG, you could first restrict to the Smith Set, which would avoid such troubles, but it seems a little fragile to me.</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Aug 4, 2021 at 11:30 AM Susan Simmons <<a href="mailto:suzerainsimmons@outlook.com">suzerainsimmons@outlook.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div>
<div>Note if we replace A(X) approval of X with </div>
<div>Log R(X), where R(X) is the ratio of X's best pairwise score to X's worst pairwise score, then ASM and RSM are the same</div>
<div><br>
</div>
<div><br>
</div>
<div><br>
</div>
<div id="gmail-m_-1786872187258125470composer_signature">
<div dir="auto" style="font-size:85%;color:rgb(87,87,87)">Sent from my MetroPCS 4G LTE Android Device</div>
</div>
<div><br>
</div>
<div><br>
</div>
<div>-------- Mensaje original --------</div>
<div>De: Susan Simmons <<a href="mailto:suzerainsimmons@outlook.com" target="_blank">suzerainsimmons@outlook.com</a>> </div>
<div>Fecha: 4/8/21 10:31 a. m. (GMT-08:00) </div>
<div>A: <a href="mailto:election-methods@lists.electorama.com" target="_blank">election-methods@lists.electorama.com</a> </div>
<div>Asunto: Round Robin Tournament Showings </div>
<div><br>
</div>
<div>
<div><br>
</div>
<div><font face="sans-serif">After a Round RobinTournament concludes its pairwise contests how should we decide the finishing order (1st place, 2nd place, 3rd place, etc.) of the participating teams?</font></div>
<div><font face="sans-serif"><br>
</font></div>
<div><font face="sans-serif">Here's a solution that's reminiscent of Approval Sorted Margins:</font></div>
<div><font face="sans-serif"><br>
</font></div>
<div>Since there is no precise analogue for a team's approval in this context we use the ratio R of its best score to its worst score to determine a tentative list order.</div>
<div><br>
</div>
<div>Then as long as some adjacent pair of teams is out of order pairwise, among such pairs transpose the one whose members' R ratios are closest, i.e. with the smallest absolute value of log(R1/R2).</div>
<div><br>
</div>
<div>The CW and CL (when they exist) will appear at opposite ends of the sorted list.</div>
<div><br>
</div>
<div>And there is the same kind of reverse symmetry that ASM provides in the context of elections.</div>
<div><br>
</div>
<div>In fact, we could call this method RSM or Ratio Sorted Margins, where the margins are the absolute differences of form</div>
<div> |log R1 - log R2| </div>
<div>in analogy to the approval margins of form |A1 - A2|.</div>
<div><br>
</div>
<div>People that are uncomfortable with approval cutoffs can use RSM instead of ASM ... no approval necessary ... ranked preference style ballots are perfectly adequate ...in fact, since it is a tournament method, the pairwise vote matrix is adequate by itself.</div>
<div><br>
</div>
<div>No more excuses for clone dependent, intractable Kemeny-Young: just use RSM!</div>
<div><br>
</div>
<div><br>
</div>
<div id="gmail-m_-1786872187258125470composer_signature">
<div dir="auto" style="font-size:85%;color:rgb(87,87,87)">Sent from my MetroPCS 4G LTE Android Device</div>
</div>
</div>
</div>
----<br>
Election-Methods mailing list - see <a href="https://electorama.com/em" rel="noreferrer" target="_blank">https://electorama.com/em</a> for list info<br>
</blockquote></div>