<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <div class="moz-cite-prefix"><br>
      Have not noticed any theoretcal advantages, tho not familiar with
      Bucklin. As mentioned before, Laplace decided in favor of election
      counting the relative importance of preferences, which is why he
      favored Borda to Condorcet. (It doesn't look like Bucklin does
      that, beyond co-opting a Borda count.) Since then Gregory method
      has improved on Borda. And actually the Meek method keep value is
      a further conceptual improvement. I have an interest to declare
      there, because have extended the use of the keep value, in a
      Binomial STV, and to which I recently made a couple of up-dates.
      So it's considerably changed (complexified!) from the example I
      did for Kristofer: now it is: Four Averages Binomial Single
      Transferable Vote (FAB STV).<br>
      <br>
      Next day (brushing aside the cobwebs): It occurs to me that by
      "theoretically superior," you may be refering to Bucklin
      uniformity of method for single and multiple vacancies. If so,
      Binomial STV (STV^) has that covered, because  it is a progression
      from Meek method, extending the use of keep values, to conduct
      counts for single vacancies the same way as multiple vacancies, as
      Gregory method could not, nor indeed Meek method itself, from
      where it left off.<br>
      <br>
      For theorists, who seek general explanations, STV^ fulfills the
      requirement of a consistent treatment of both single and multiple
      vacancies.<br>
      <br>
      The scientific significance of this is that STV^ brings a more
      powerful scale of measurement to single vacancies. However single
      vacancies are (much) less desirable both from a democratic and a
      mensural view-point, lacking "Proportional Representation. The key
      to democracy." (As the Hoag and Hallett classic is titled.)<br>
      <br>
      Following Google notation for "to the power of", which is the
      circumflex, ^, then notation for Binomial STV is: STV^. The
      binomial theorem expands by powers, and this expansion is the
      (non-commutative) guide for systematic STV recounts.<br>
      <br>
      Traditional (uninomial) STV is STV^0 (zero order STV -- like your
      start-up Meccano set 0, which this child never got beyond!).<br>
      First order Binomial STV is STV^1. (Basic combination of
      preference election count and reverse preference or unpreference
      exclusion count)<br>
      Second order is STV^2, and so on. (Recounts based on systematic
      qualifications of the previous order results.)<br>
      <br>
        from<br>
      Richard Lung.<br>
      <br>
      On 04/02/2018 23:25, Jameson Quinn wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:CAO82iZx+a8xGFhK86UodGi2LXvZ1mmjujo7zD=S2_2d4G=wFbA@mail.gmail.com">
      <div dir="ltr">I meant "theoretically superior". I agree that in
        practice STV is a better proposal — more well-tested, and the
        theoretical downsides are relatively minor.</div>
      <div class="gmail_extra"><br>
        <div class="gmail_quote">2018-02-04 18:04 GMT-05:00 Richard Lung
          <span dir="ltr"><<a href="mailto:voting@ukscientists.com"
              target="_blank" moz-do-not-send="true">voting@ukscientists.com</a>></span>:<br>
          <blockquote class="gmail_quote" style="margin:0 0 0
            .8ex;border-left:1px #ccc solid;padding-left:1ex">
            <div text="#000000" bgcolor="#FFFFFF">
              <div class="m_6475345007026157849moz-cite-prefix"><br>
                BTV "known on this list for some time now as a superior
                option to STV." Other systems, including BTV are not so
                regarded by organisations, like the PRSA and Electoral
                Reform Society for well over a century. Not to mention
                Fair Votes USA.<br>
                <br>
                Richard Lung.
                <div>
                  <div class="h5"><br>
                    <br>
                    <br>
                    On 04/02/2018 19:18, Jameson Quinn wrote:<br>
                  </div>
                </div>
              </div>
              <div>
                <div class="h5">
                  <blockquote type="cite">
                    <div dir="ltr">Yes, I believe that many of these
                      references refer to what is essentially BTV, which
                      has been known on this list for some time now as a
                      superior option to STV. I'm happy that it's now in
                      the literature, and don't really care about
                      naming/precedence.
                      <div><br>
                      </div>
                      <div>It's my experience that many prop-rep voting
                        methods can be expressed in terms of an STV
                        backend. PLACE, Dual Member Proportional, many
                        MMP variants, etc. can all be seen as just
                        adding options (such as overlapping seats for
                        MMP and DMP, biproportionality for DMP and
                        PLACE, and partial delegation for PLACE) on top
                        of STV. You could therefore create new versions
                        of all of the above by replacing STV with BTV. I
                        think this would be a small step up — but not
                        worth the additional difficulty of explanation,
                        in a world that's more used to STV.</div>
                    </div>
                    <div class="gmail_extra"><br>
                      <div class="gmail_quote">2018-02-04 12:22
                        GMT-05:00 Kristofer Munsterhjelm <span
                          dir="ltr"><<a
                            href="mailto:km_elmet@t-online.de"
                            target="_blank" moz-do-not-send="true">km_elmet@t-online.de</a>></span>:<br>
                        <blockquote class="gmail_quote" style="margin:0
                          0 0 .8ex;border-left:1px #ccc
                          solid;padding-left:1ex"><span>On 01/29/2018
                            02:43 PM, Arthur Wist wrote:<br>
                            <blockquote class="gmail_quote"
                              style="margin:0 0 0 .8ex;border-left:1px
                              #ccc solid;padding-left:1ex"> Hello,<br>
                              <br>
                              Sorry in advanced for the huge load of
                              information all at once, but I think
                              you'll highly likely find the following
                              quite interesting:<br>
                              <br>
                              On how people misunderstood the
                              Duggan-Schwartz theorem:<br>
                              <a href="https://arxiv.org/abs/1611.07105"
                                rel="noreferrer" target="_blank"
                                moz-do-not-send="true">https://arxiv.org/abs/1611.071<wbr>05</a>
                              - Two statements of the Duggan-Schwartz
                              theorem<br>
                              <a href="https://arxiv.org/abs/1611.07102"
                                rel="noreferrer" target="_blank"
                                moz-do-not-send="true">https://arxiv.org/abs/1611.071<wbr>02</a>
                              -  Manipulability of consular election
                              rules<br>
                              <br>
                              EVERYTHING here:<br>
                              <a
href="https://scholar.google.com/citations?user=ssb0yjUAAAAJ&sortby=pubdate"
                                rel="noreferrer" target="_blank"
                                moz-do-not-send="true">https://scholar.google.com/cit<wbr>ations?user=ssb0yjUAAAAJ&sortb<wbr>y=pubdate</a><br>
                              <br>
                              Some key highlights from that last link
                              above:<br>
                              <br>
                              <a href="https://arxiv.org/abs/1708.07580"
                                rel="noreferrer" target="_blank"
                                moz-do-not-send="true">https://arxiv.org/abs/1708.075<wbr>80</a>
                              - Achieving Proportional Representation
                              via Voting [ On which a blog post exists:
                              <a
href="https://medium.com/@haris.aziz/achieving-proportional-representation-2d741871e78"
                                rel="noreferrer" target="_blank"
                                moz-do-not-send="true">https://medium.com/@haris.aziz<wbr>/achieving-proportional-repres<wbr>entation-2d741871e78</a>.
                              Better than STV and STV derivatives in all
                              criteria? You decide! ]<br>
                            </blockquote>
                            <br>
                          </span> >From a cursory look at the latter,
                          that looks like Bucklin with a STV-style
                          elect-and-reweight system. I wrote some posts
                          about a vote-management resistant version of
                          Bucklin at <a
href="http://lists.electorama.com/pipermail/election-methods-electorama.com/2016-December/001234.html"
                            rel="noreferrer" target="_blank"
                            moz-do-not-send="true">http://lists.electorama.com/pi<wbr>permail/election-methods-elect<wbr>orama.com/2016-December/001234<wbr>.html</a>
                          and <a
href="http://lists.electorama.com/pipermail/election-methods-electorama.com/2017-September/001584.html"
                            rel="noreferrer" target="_blank"
                            moz-do-not-send="true">http://lists.electorama.com/pi<wbr>permail/election-methods-elect<wbr>orama.com/2017-September/00158<wbr>4.html</a>,
                          and found out that the simplest way of
                          breaking a tie when more than one candidate
                          exceeds a Droop quota is nonmonotonic.<br>
                          <br>
                          The simplest tiebreak is that when there are
                          multiple candidates with more than a quota's
                          worth of votes (up to the rank you're
                          considering), you elect the one with the most
                          votes. This can be nonmonotone in th following
                          way:<br>
                          <br>
                          Suppose in the base scenario, A wins by
                          tiebreak, and B has one vote less at the rank
                          q, so A is elected instead of B. In a later
                          round, say, q+1, E wins. Then suppose a few
                          voters who used to rank A>E decides to push
                          E higher.<br>
                          <br>
                          Then B wins at rank q. If now most of the B
                          voters vote E at rank q+1, it may happen that
                          the deweighting done to these voters (since
                          they got what they wanted with B being elected
                          instead of A) could keep the method from
                          electing E.<br>
                          <br>
                          E.g. A could be a left-wing candidate, B be a
                          right-wing candidate, and E a center-right
                          candidate. In the base scenario, A wins and
                          then the B voters get compensated by having
                          the center-right candidate win. But when
                          someone raises E, the method can't detect the
                          left wing support and so the right-wing
                          candidate wins instead. Afterwards, the
                          right-wing has drawn weight away from E (due
                          to E not being a perfect centrist, but instead
                          being center-right), and so E doesn't win.<br>
                          <br>
                          Achieving monotonicity in multiwinner rules is
                          rather hard; it's not obvious how a method
                          could get around the scenario above without
                          considering later ranks.<br>
                          <br>
                          I'm not sure if rank-maximality solves the
                          problem above. If it doesn't, then the above
                          is an example of CM failure but not RRCM
                          failure.<br>
                          <br>
                          See also <a
href="http://lists.electorama.com/pipermail/election-methods-electorama.com/2012-January/094876.html"
                            rel="noreferrer" target="_blank"
                            moz-do-not-send="true">http://lists.electorama.com/pi<wbr>permail/election-methods-elect<wbr>orama.com/2012-January/094876.<wbr>html</a>
                          and <a
href="http://lists.electorama.com/pipermail/election-methods-electorama.com/2012-February/095188.html"
                            rel="noreferrer" target="_blank"
                            moz-do-not-send="true">http://lists.electorama.com/pi<wbr>permail/election-methods-elect<wbr>orama.com/2012-February/095188<wbr>.html</a>
                          for another Bucklin PR method that seemed to
                          be monotone.<br>
                          <br>
                          It's also unknown whether Schulze STV is
                          monotone, though it seems to do much better
                          than IRV-type STV in this respect. And I'd add
                          that there's yet another (very strong) type of
                          monotonicity not mentioned in the paper as far
                          as I could see. Call it "all-winners
                          monotonicity" - raising a winner on some
                          ballot should not replace any of the
                          candidates on the elected council with anyone
                          ranked lower on that ballot.<br>
                          <br>
                          (There's a result by Woodall that you can't
                          have all of LNHelp, LNHarm, mutual majority
                          and monotonicity. Perhaps, due to the
                          difficulty of stopping the monotonicity
                          failure scenario above, the equivalent for
                          multiwinner would turn out to be "you can't
                          have either LNHelp or LNHarm, and both Droop
                          proportionality and monotonicity"...)
                          <div class="m_6475345007026157849HOEnZb">
                            <div class="m_6475345007026157849h5"><br>
                              ----<br>
                              Election-Methods mailing list - see <a
                                href="http://electorama.com/em"
                                rel="noreferrer" target="_blank"
                                moz-do-not-send="true">http://electorama.com/em</a>
                              for list info<br>
                            </div>
                          </div>
                        </blockquote>
                      </div>
                      <br>
                    </div>
                    <br>
                    <fieldset
                      class="m_6475345007026157849mimeAttachmentHeader"></fieldset>
                    <br>
                    <pre>----
Election-Methods mailing list - see <a class="m_6475345007026157849moz-txt-link-freetext" href="http://electorama.com/em" target="_blank" moz-do-not-send="true">http://electorama.com/em</a> for list info
</pre>
                  </blockquote>
                  <p><br>
                  </p>
                </div>
              </div>
              <span class="HOEnZb"><font color="#888888">
                  <pre class="m_6475345007026157849moz-signature" cols="72">-- 
Richard Lung.
<a class="m_6475345007026157849moz-txt-link-freetext" href="http://www.voting.ukscientists.com" target="_blank" moz-do-not-send="true">http://www.voting.<wbr>ukscientists.com</a>
Democracy Science series 3 free e-books in pdf:
<a class="m_6475345007026157849moz-txt-link-freetext" href="https://plus.google.com/106191200795605365085" target="_blank" moz-do-not-send="true">https://plus.google.com/<wbr>106191200795605365085</a>
E-books in epub format:
<a class="m_6475345007026157849moz-txt-link-freetext" href="https://www.smashwords.com/profile/view/democracyscience" target="_blank" moz-do-not-send="true">https://www.smashwords.com/<wbr>profile/view/democracyscience</a>

</pre>
                  <div
                    id="m_6475345007026157849DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2"><br>
                    <table style="border-top:1px solid #d3d4de">
                      <tbody>
                        <tr>
                          <td style="width:55px;padding-top:13px"><a
href="https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient"
                              target="_blank" moz-do-not-send="true"><img
src="https://ipmcdn.avast.com/images/icons/icon-envelope-tick-round-orange-animated-no-repeat-v1.gif"
                                alt="" style="width:46px;height:29px"
                                moz-do-not-send="true" height="29"
                                width="46"></a></td>
                          <td
style="width:470px;padding-top:12px;color:#41424e;font-size:13px;font-family:Arial,Helvetica,sans-serif;line-height:18px">Virus-free.
                            <a
href="https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient"
                              style="color:#4453ea" target="_blank"
                              moz-do-not-send="true">www.avast.com</a> </td>
                        </tr>
                      </tbody>
                    </table>
                    <a
                      href="#m_6475345007026157849_DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2"
                      width="1" height="1" moz-do-not-send="true"> </a></div>
                </font></span></div>
          </blockquote>
        </div>
        <br>
      </div>
    </blockquote>
    <p><br>
    </p>
    <pre class="moz-signature" cols="72">-- 
Richard Lung.
<a class="moz-txt-link-freetext" href="http://www.voting.ukscientists.com">http://www.voting.ukscientists.com</a>
Democracy Science series 3 free e-books in pdf:
<a class="moz-txt-link-freetext" href="https://plus.google.com/106191200795605365085">https://plus.google.com/106191200795605365085</a>
E-books in epub format:
<a class="moz-txt-link-freetext" href="https://www.smashwords.com/profile/view/democracyscience">https://www.smashwords.com/profile/view/democracyscience</a>

</pre>
  </body>
</html>