<div dir="ltr"><div><div><div>Hello,<br><br></div>Sorry in advanced for the huge load of information all at once, but I think you'll highly likely find the following quite interesting:<br><br>On how people misunderstood the Duggan-Schwartz theorem:<br><a href="https://arxiv.org/abs/1611.07105">https://arxiv.org/abs/1611.07105</a> - Two statements of the Duggan-Schwartz theorem<br><a href="https://arxiv.org/abs/1611.07102">https://arxiv.org/abs/1611.07102</a> -  Manipulability of consular election rules<br><br>EVERYTHING here:<br><a href="https://scholar.google.com/citations?user=ssb0yjUAAAAJ&sortby=pubdate">https://scholar.google.com/citations?user=ssb0yjUAAAAJ&sortby=pubdate</a><br><br>Some key highlights from that last link above:<br><br><a href="https://arxiv.org/abs/1708.07580">https://arxiv.org/abs/1708.07580</a> - Achieving Proportional Representation via Voting [ On which a blog post exists: <a href="https://medium.com/@haris.aziz/achieving-proportional-representation-2d741871e78">https://medium.com/@haris.aziz/achieving-proportional-representation-2d741871e78</a>. Better than STV and STV derivatives in all criteria? You decide! ]<br><br><a href="http://materials.dagstuhl.de/files/17/17261/17261.HarisAziz.Slides.pdf">http://materials.dagstuhl.de/files/17/17261/17261.HarisAziz.Slides.pdf</a> - Proportional Representation in Approval-based Voting and Beyond. [This is a presentation - and it's outdated by now, albeit it's only from Summer last year.]<br><a href="https://arxiv.org/abs/1703.10415"><br>https://arxiv.org/abs/1703.10415</a> - A polynomial-time algorithm to achieve extended justified representation<br><br><a href="https://arxiv.org/abs/1711.06030">https://arxiv.org/abs/1711.06030</a> - Sub-committee Approval Voting and Generalised Justified Representation Axiom [This generalizes large parts of the mathematics of voting theory!]<br><br>And on the topic of committees, not quite from election science, but relevant nonetheless:<br><br><a href="https://arxiv.org/abs/0804.2202">https://arxiv.org/abs/0804.2202</a> -  To how many politicians should government be left? [With a p-value of =<10^-6. And no, that's NOT a typo.]<br><a href="https://arxiv.org/abs/0808.1684">https://arxiv.org/abs/0808.1684</a> - Parkinson's Law Quantified: Three Investigations on Bureaucratic Inefficiency<br><br>The above two papers got a bit of news & blog coverage back in the day:<br><br><a href="http://old.themoscowtimes.com/article/business-in-brief/article/austrians-suggest-small-is-better/article/austrians-suggest-small-is-better/362667.html">http://old.themoscowtimes.com/article/business-in-brief/article/austrians-suggest-small-is-better/article/austrians-suggest-small-is-better/362667.html</a><br><br><a href="http://physicsworld.com/cws/article/news/2008/apr/27/physicists-quantify-the-coefficient-of-inefficiency">http://physicsworld.com/cws/article/news/2008/apr/27/physicists-quantify-the-coefficient-of-inefficiency</a><br><br><a href="https://www.nature.com/news/2008/080822/full/news.2008.1050.html">https://www.nature.com/news/2008/080822/full/news.2008.1050.html</a><br><br><a href="http://www.telegraph.co.uk/news/science/4221839/Eight-people-on-committee-leads-to-decision-deadlock-scientists-say.html">http://www.telegraph.co.uk/news/science/4221839/Eight-people-on-committee-leads-to-decision-deadlock-scientists-say.html</a><br><br><a href="https://www.thetimes.co.uk/article/numbers-up-for-unlucky-eight-nnt5js8jdvm">https://www.thetimes.co.uk/article/numbers-up-for-unlucky-eight-nnt5js8jdvm</a><br><br><a href="https://www.newscientist.com/article/mg20126902.200-editorial-parkinsons-law-is-alive-and-well/">https://www.newscientist.com/article/mg20126902.200-editorial-parkinsons-law-is-alive-and-well/</a><br><br><a href="https://www.newscientist.com/article/mg20126901.300-explaining-the-curse-of-work/?full=true">https://www.newscientist.com/article/mg20126901.300-explaining-the-curse-of-work/?full=true</a><br><br><br></div>Kind regards,<br><br><br></div><br></div>