<div dir="ltr">Arrow's theorem only applies to ranked systems, while MJ is a rated system (as are Score/Range, SRV/STAR, Approval, etc.) Later in life, Arrow supported rated systems: <a href="https://electology.org/podcasts/2012-10-06_kenneth_arrow" target="_blank">https://electology.org/<wbr>podcasts/2012-10-06_kenneth_<wbr>arrow</a><br><div class="gmail_extra"><br></div><div class="gmail_extra">Gibbard's theorem is supposed to apply to all conceivable voting systems, though.<br></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Jun 5, 2017 at 5:48 PM, steve bosworth <a href="http://stevebosworth-at-hotmail.com" target="_blank">stevebosworth-at-hotmail.com</a> |electorama electowiki/Example Allow| <span dir="ltr"><<a href="mailto:9zz1sjkwvt@sneakemail.com" target="_blank">9zz1sjkwvt@sneakemail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div dir="ltr">
<div id="m_-1893923223216821456m_-504193719202307891divtagdefaultwrapper" style="font-size:14pt;color:#000000;font-family:Calibri,Arial,Helvetica,sans-serif" dir="ltr">
<p>Is it not still true that one of the great virtues of MJ is that it avoids Arrow's paradox?<br>
</p>
<br>
<br>
<div style="color:rgb(0,0,0)">
<div>
<hr style="width:98%;display:inline-block">
<div id="m_-1893923223216821456m_-504193719202307891x_divRplyFwdMsg" dir="ltr"><font style="font-size:11pt" face="Calibri, sans-serif" color="#000000"><b>From:</b> Election-Methods <<a href="mailto:election-methods-bounces@lists.electorama.com" target="_blank">election-methods-bounces@list<wbr>s.electorama.com</a>> on behalf of <a href="mailto:election-methods-request@lists.electorama.com" target="_blank">election-methods-request@lists<wbr>.electorama.com</a> <<a href="mailto:election-methods-request@lists.electorama.com" target="_blank">election-methods-request@list<wbr>s.electorama.com</a>><br>
<b>Sent:</b> Wednesday, May 31, 2017 7:03 PM<br>
<b>To:</b> <a href="mailto:election-methods@lists.electorama.com" target="_blank">election-methods@lists.elector<wbr>ama.com</a><br>
<b>Subject:</b> Election-Methods Digest, Vol 155, Issue 21</font>
<div> </div>
</div>
</div>
<div>
<div id="m_-1893923223216821456m_-504193719202307891x_divRplyFwdMsg" dir="ltr"></div>
</div>
<font size="2">
<div>
<div id="m_-1893923223216821456m_-504193719202307891x_divRplyFwdMsg" dir="ltr">
<div></div>
</div>
</div>
<span style="font-size:10pt">
<div><br>
</div>
<div id="m_-1893923223216821456m_-504193719202307891x_divRplyFwdMsg" dir="ltr"></div>
<div></div>
<div class="m_-1893923223216821456m_-504193719202307891PlainText"> 1. Corollary to Arrow's Theorem (Rob Lanphier)<br>
2. Re: Corollary to Arrow's Theorem (Juho Laatu)<br>
<br>
<br>
------------------------------<wbr>------------------------------<wbr>----------<br>
<br>
Message: 1<br>
Date: Wed, 31 May 2017 08:50:52 -0700<br>
From: Rob Lanphier <<a href="mailto:robla@robla.net" target="_blank">robla@robla.net</a>><br>
To: <a href="mailto:election-methods@lists.electorama.com" target="_blank">election-methods@lists.elector<wbr>ama.com</a><br>
Subject: [EM] Corollary to Arrow's Theorem<br>
Message-ID:<br>
<<a href="mailto:CAK9hOYm7sdQsneGyZVhNueBdetJpP-oWWM0_jnQEJ2kck8kD9Q@mail.gmail.com" target="_blank">CAK9hOYm7sdQsneGyZVhNueBdetJp<wbr>P-oWWM0_jnQEJ2kck8kD9Q@mail.gm<wbr>ail.com</a>><br>
Content-Type: text/plain; charset="utf-8"<br>
<br>
Hi all,<br>
<br>
It appears that Randall Monroe has discovered an important corollary to<br>
Arrow's Theorem. It takes some patience to sort through it, but you'll<br>
find it described in this paper:<br>
<<a id="m_-1893923223216821456m_-504193719202307891LPlnk817006" href="https://xkcd.com/1844/" target="_blank">https://xkcd.com/1844/</a>><br>
<br>
<br>
Something to think about.<br>
<br>
Rob---------------------------<wbr>---<br>
<br>
End of Election-Methods Digest, Vol 155, Issue 21<br>
******************************<wbr>*******************<br>
</div>
</span></font></div>
</div>
</div>
<br>----<br>
Election-Methods mailing list - see <a href="http://electorama.com/em" rel="noreferrer" target="_blank">http://electorama.com/em</a> for list info<br>
<br></blockquote></div><br></div></div>