<p dir="ltr">EM has discussed Nash equilibrium a number of times, & this, if seems to me, is what EM agrees Nash equilibrium to mean:</p>
<p dir="ltr">A "cohort" is a set of voters who prefer & vote the same as eachother. </p>
<p dir="ltr">At EM, for voting-systems, a Nash equilibrium is an outcome that no cohort can improve for itself by changing its vote.</p>
<p dir="ltr">(end of dfn)</p>
<p dir="ltr">NEO assumes that the voters' rankings are sincere, & indicate the voters' actual preferences & indifferences.</p>
<p dir="ltr">Chicken dilemma:</p>
<p dir="ltr">The usual example:</p>
<p dir="ltr">3 candidates: A, B, & C.</p>
<p dir="ltr">The A voters & B voters are a majority who greatly prefer A & B to C. (though NEO of course doesn't recognize unexpressed preferences)</p>
<p dir="ltr">Faction size relations:</p>
<p dir="ltr">C > A > B</p>
<p dir="ltr">The C voters are indifferent between A & B, & dislike both</p>
<p dir="ltr">Rankings:<br></p>
<p dir="ltr">A voters: A > B<br>
B voters: B<br>
C voters: C</p>
<p dir="ltr">Two Approval Nash equilibria:</p>
<p dir="ltr">A,B<br>
B<br>
C</p>
<p dir="ltr">Electing B.</p>
<p dir="ltr">and</p>
<p dir="ltr">A<br>
B,A<br>
C</p>
<p dir="ltr">Electing A.</p>
<p dir="ltr">So, find the equilibria in an election with just A & B:</p>
<p dir="ltr">A<br>
B</p>
<p dir="ltr">and</p>
<p dir="ltr">A<br>
B, A</p>
<p dir="ltr">Either way A wins.</p>
<p dir="ltr">CD's requirement, that B not win, is met.</p>
<p dir="ltr">Truncation against CWs:</p>
<p dir="ltr">Instead of A, B, & C, I prefer:</p>
<p dir="ltr">Worst, Middle, & Favorite. </p>
<p dir="ltr">W, M, & F.</p>
<p dir="ltr">More expressive. Of course the W voters are the offensive strategizers.</p>
<p dir="ltr">Rankings:</p>
<p dir="ltr">W voters: W<br>
M voters: M>W<br>
F voters: F>M</p>
<p dir="ltr">Approval Nash Equilibrium:</p>
<p dir="ltr">F voters: F, M<br>
M voters: M<br>
W voters: W</p>
<p dir="ltr">If the F voters don't approve M, that could only change the winner to W, worsening the outcome for them.</p>
<p dir="ltr">If the M voters approve W, that could only change the winner to W, worsening the outcome for them.</p>
<p dir="ltr">W voters gain nothing by approving M. That's another Nash equilibrium.</p>
<p dir="ltr">M wins in both Equilibria.</p>
<p dir="ltr">Burial & defensive truncation:</p>
<p dir="ltr">Rankings:</p>
<p dir="ltr">F voters: F>M<br>
M voters: M<br>
W voters: W>F</p>
<p dir="ltr">Approval Nash Equilibria;</p>
<p dir="ltr">F voters: F, M<br>
M voters: M<br>
W voters: W,F</p>
<p dir="ltr">That's a disequilibrium, because the F voters' approval of M could change the winner from F to M. They withdraw that Approval:</p>
<p dir="ltr">F voters : F<br>
M voters: M<br>
W voters: W, F</p>
<p dir="ltr">That's a Nash equilibrium.</p>
<p dir="ltr">(W voters are assumed to prefer F to M, due to their ranking)</p>
<p dir="ltr">F wins the NEO election. The burial is thwarted & penalized.</p>
<p dir="ltr">Michael Ossipoff<br><br><br><br><br><br><br><br><br><br><br><br><br><br></p>