<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    Two French mathematicians, who say they have spent the last dozen
    years studying voting systems, have proposed a new method they call
    Majority Judgment. In a US presidential election, it would ask
    voters to judge how good or bad a president they believe each
    candidate would be if elected. There would be 6 options:<br>
    <br>
    Great President<br>
    Good President<br>
    Average President<br>
    Poor President<br>
    Terrible President<br>
    Never Heard of Candidate<br>
    <br>
    Their proposal was posted May 9, 2016 at The Conversation and May 11
    at Salon.com:<br>
    <blockquote><a
href="https://theconversation.com/trump-and-clinton-victorious-proof-that-us-voting-system-doesnt-work-58752"><a class="moz-txt-link-freetext" href="https://theconversation.com/trump-and-clinton-victorious-proof-that-us-voting-system-doesnt-work-58752">https://theconversation.com/trump-and-clinton-victorious-proof-that-us-voting-system-doesnt-work-58752</a></a><br>
      <a
href="http://www.salon.com/2016/05/11/two_faces_of_a_rotting_system_partner/"><a class="moz-txt-link-freetext" href="http://www.salon.com/2016/05/11/two_faces_of_a_rotting_system_partner/">http://www.salon.com/2016/05/11/two_faces_of_a_rotting_system_partner/</a></a><br>
    </blockquote>
    The authors make the following claim, among others:<br>
    <blockquote>"<a
        href="https://mitpress.mit.edu/books/majority-judgment">Majority
        judgment</a> resolves the conundrum of Arrow’s theorem: neither
      the Condorcet nor the Arrow paradox can occur.<br>
    </blockquote>
    I'd appreciate any thoughts about their proposal and about how
    Majority Judgment compares to other voting methods, particularly
    Range Voting.<br>
    <br>
    Thanks,<br>
    Ralph Suter<br>
  </body>
</html>