<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div>Majority Judgment seems some discrete version of median voting, a subject these professors already treated. Obviously, like range voting, it solves Condorcet paradox which is based on preferences. It may have some other problems, linked to their gauge value definition. Is +33 vs -32 really better than +30 vs -1 ?<br><br>Envoyé de mon iPhone</div><div><br>Le 12 mai 2016 à 10:31, Ralph Suter <<a href="mailto:RLSuter@aol.com">RLSuter@aol.com</a>> a écrit :<br><br></div><blockquote type="cite"><div>
  
    <meta content="text/html; charset=windows-1252" http-equiv="Content-Type">
  
  
    Two French mathematicians, who say they have spent the last dozen
    years studying voting systems, have proposed a new method they call
    Majority Judgment. In a US presidential election, it would ask
    voters to judge how good or bad a president they believe each
    candidate would be if elected. There would be 6 options:<br>
    <br>
    Great President<br>
    Good President<br>
    Average President<br>
    Poor President<br>
    Terrible President<br>
    Never Heard of Candidate<br>
    <br>
    Their proposal was posted May 9, 2016 at The Conversation and May 11
    at <a href="http://salon.com">Salon.com</a>:<br>
    <blockquote><a href="https://theconversation.com/trump-and-clinton-victorious-proof-that-us-voting-system-doesnt-work-58752"></a><a class="moz-txt-link-freetext" href="https://theconversation.com/trump-and-clinton-victorious-proof-that-us-voting-system-doesnt-work-58752">https://theconversation.com/trump-and-clinton-victorious-proof-that-us-voting-system-doesnt-work-58752</a><br>
      <a href="http://www.salon.com/2016/05/11/two_faces_of_a_rotting_system_partner/"></a><a class="moz-txt-link-freetext" href="http://www.salon.com/2016/05/11/two_faces_of_a_rotting_system_partner/">http://www.salon.com/2016/05/11/two_faces_of_a_rotting_system_partner/</a><br>
    </blockquote>
    The authors make the following claim, among others:<br>
    <blockquote>"<a href="https://mitpress.mit.edu/books/majority-judgment">Majority
        judgment</a> resolves the conundrum of Arrow’s theorem: neither
      the Condorcet nor the Arrow paradox can occur.<br>
    </blockquote>
    I'd appreciate any thoughts about their proposal and about how
    Majority Judgment compares to other voting methods, particularly
    Range Voting.<br>
    <br>
    Thanks,<br>
    Ralph Suter<br>
  

</div></blockquote><blockquote type="cite"><div><span>----</span><br><span>Election-Methods mailing list - see <a href="http://electorama.com/em">http://electorama.com/em</a> for list info</span><br></div></blockquote></body></html>