<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-1">
<!--[if gte mso 9]><xml>
<w:WordDocument>
<w:View>Normal</w:View>
<w:Zoom>0</w:Zoom>
<w:Compatibility>
<w:BreakWrappedTables/>
<w:SnapToGridInCell/>
<w:WrapTextWithPunct/>
<w:UseAsianBreakRules/>
</w:Compatibility>
<w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
</w:WordDocument>
</xml><![endif]--><!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:"Times New Roman";}
</style>
<![endif]-->
<p class="MsoNormal"><span style="font-size: 14pt; font-family:
"Arial Rounded MT Bold";">To STV voting and to
Election methods groups.<br>
</span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold""><br>
The
Electoral Reform Society survey of the 2016 Irish general
election describes a
strategic voting practice, by which allied candidates seek to
bolster the first
preferences of their least prefered colleagues, to prevent their
early
exclusion.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">My
invention of (abstentions-inclusive keep-value averaged)
Binomial STV would do
away with the need for this insincere voting. It does this by a
minimum of two
complementary counts: an election count and an exclusion count.
The latter is a
rational count, in its own right, conducted on the voters
preferences in
reverse order, instead of an arbitrary exclusion, when the
transferable
surpluses run out, in the election count.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold""><o:p> </o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">To
ensure that the exclusion count is not given undue importance,
compared to the
election count, all preferences are counted, including
abstentions, which are
generally at the end of the ballot papers, when voters cease to
express a
preference.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">Hence
it is possible for the abstentions to reach a quota, in which
case, a seat
remains unfilled.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold""><o:p> </o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">It
is possible for consistently rational counts, both for election
and for
exclusion, by extending the Meek method use of the re-adjustable
keep value, to
candidates in deficit of a quota, as well as in surplus of a
quota.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">Each
candidates election keep value and exclusion keep value,
inverted to provide a
back-up election keep value, are averaged to arrive at deciding
keep values.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold""><o:p> </o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">This
describes only the simplest first order Binomial STV,
corresponding to the
first order of the binomial theorem, consisting of just two
terms: one election
count of preferences and one exclusion count of unpreferences. <o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">But
it is also possible to have a second-order Binomial STV, based
on the four
combinations of the second-order binomial theorem. And so on.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold""><o:p> </o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">An
example of how first and second order Binomial STV work is given
here:<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold""><a
href="http://www.voting.ukscientists.com/Binomial_STV.html">http://www.voting.ukscientists.com/Binomial_STV.html</a><o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold""><o:p> </o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">The
example is drastically over-simplified, for a system requiring
computer programming,
as does Meek method. Unlike Meek method, all the abstentions are
counted, so
there is no requirement to reduce the Droop quota, as the
preferences run out.
Otherwise, the way to code Binomial STV is to start from the
Meek method
program and adapt to the modified rules, extending the use of
the keep value,
and so forth.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold"">I
am looking for some organisation that might take up this work of
implementing
Binomial STV and running preliminary trials.<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:14.0pt;font-family:"Arial Rounded MT
Bold""><o:p> </o:p></span></p>
<meta name="ProgId" content="Word.Document">
<meta name="Generator" content="Microsoft Word 10">
<meta name="Originator" content="Microsoft Word 10">
<link rel="File-List"
href="file:///C:%5CUsers%5CRichard%5CAppData%5CLocal%5CTemp%5Cmsohtml1%5C01%5Cclip_filelist.xml">
<style>
<!--
/* Font Definitions */
@font-face
{font-family:"Arial Rounded MT Bold";
panose-1:2 15 7 4 3 5 4 3 2 4;
mso-font-charset:0;
mso-generic-font-family:swiss;
mso-font-pitch:variable;
mso-font-signature:3 0 0 0 1 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-parent:"";
margin:0cm;
margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:"Times New Roman";
mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
{color:blue;
text-decoration:underline;
text-underline:single;}
a:visited, span.MsoHyperlinkFollowed
{color:purple;
text-decoration:underline;
text-underline:single;}
@page Section1
{size:612.0pt 792.0pt;
margin:72.0pt 90.0pt 72.0pt 90.0pt;
mso-header-margin:36.0pt;
mso-footer-margin:36.0pt;
mso-paper-source:0;}
div.Section1
{page:Section1;}
-->
</style>
<pre class="moz-signature" cols="72">--
Richard Lung.
E-books (mostly available free or reader-sets-price)
<a class="moz-txt-link-freetext" href="http://www.voting.ukscientists.com/colverse.html">http://www.voting.ukscientists.com/colverse.html</a>
Includes the series of books on:
Democracy Science (starting with electoral reform and research);
Commentaries (literature and liberty; science and democracy);
Collected verse (in five books).</pre>
</body>
</html>