<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <div class="moz-cite-prefix">Forest,<br>
      <br>
      I consider the problem of the smallest faction winning by
      truncating (and perhaps "defecting" from a sincere solid
      coalition) to be much much<br>
      more serious than the problem of the largest faction winning by
      truncation (perhaps insincerely).  <br>
      <br>
      But in this post you seem to want to put them on the same level.
      Also you seem to assume that all sincere pairwise preferences are
      equally<br>
      strong.  Probably they aren't and if they aren't then we know the
      voters' strongest pairwise preferences are between (on the one
      side) candidates <br>
      they vote below no other and (on the other) candidates they vote
      above no other.  But since we are giving the sincere scenarios, we
      can include<br>
      preference-strength information (">" vs ">>" in giving
      voters' rankings).<br>
      <br>
      <blockquote type="cite">"A method satisfies the Economical Defense
        Criterion (EDC) if and only if every potential unilateral
        offensive move away from sincere ballots can be deterred by a
        smaller unilateral defensive move."</blockquote>
      <br>
      I'd like the definition (in this context) of  "deterred" spelt
      out.   It is much better if  "offensive moves away from sincere
      ballots" simply have no chance <br>
      of being effective (in as many circumstances as possible) than if 
      the move is given some  (less than 100%) chance of  "backfiring"
      by electing a candidate<br>
      that the offensive strategizers like less than the one who would
      have won if they'd voted sincerely.<br>
      <br>
      <blockquote type="cite">"How should we measure the size of a move?<br>
        <br>
        It should be by the total number of order changes over all
        changed ballots.  An order reversal of the type X>Y to Y>X
        should count significantly more than a collapse of the type
        X>Y to X=Y or the reverse process from X=Y to X>Y."</blockquote>
      <br>
      You don't fully answer your own (presumably rhetorical) question. 
      You don't specify how much more  "significantly more" is.<br>
      <br>
      <blockquote type="cite">"Here's another criterion:<br>
        <br>
        A method satisfies the Semi-Sincere Criterion if and only if
        each sincere ballot set can be modified without any order
        reversals into a strategic equilibrium ballot set that preserves
        the sincere winner."</blockquote>
      <br>
      Assuming that "strategic equilibrium ballot sets" aren't too
      difficult to recognise, this looks interesting and possibly
      useful.<br>
      <br>
      Chris Benham<br>
      <br>
      <br>
      <br>
      On 5/15/2014 9:41 AM, Forest Simmons wrote:<br>
    </div>
    <blockquote
cite="mid:CAP29oncd4g_bfSeu2wHgNGYazvW39k0E+Sb81ChYZuntNG5wUw@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div>
          <div>
            <div>
              <div>
                <div>
                  <div>
                    <div>
                      <div>
                        <div>
                          <div>
                            <div>
                              <div>
                                <div>
                                  <div>
                                    <div>
                                      <div>
                                        <div>
                                          <div>
                                            <div>
                                              <div>
                                                <div>
                                                  <div>
                                                    <div>
                                                      <div>Every
                                                        reasonable
                                                        method that
                                                        takes ranked
                                                        ballots has the
                                                        following
                                                        problem: not
                                                        every sincere
                                                        ballot set
                                                        represents a
                                                        strategic
                                                        equilibrium.<br>
                                                        <br>
                                                      </div>
                                                      In other words, no
                                                      matter the method
                                                      there is some
                                                      scenario where a
                                                      loser can change
                                                      to winner through
                                                      unilateral
                                                      insincere voting.<br>
                                                      <br>
                                                    </div>
                                                    For example,
                                                    consider the
                                                    following two
                                                    sincere scenarios:<br>
                                                    <br>
                                                  </div>
                                                  34 A>B<br>
                                                </div>
                                                31 B>A<br>
                                              </div>
                                              35 C<br>
                                              <br>
                                            </div>
                                            and <br>
                                            <br>
                                          </div>
                                          34 X>Y<br>
                                        </div>
                                        31 Y<br>
                                      </div>
                                      35 Z>Y<br>
                                      <br>
                                    </div>
                                    All of the methods that we currently
                                    consider reasonable (except perhaps
                                    IRV) , make A win in the ABC
                                    scenario, and make Y win in the XYZ,
                                    scenario.<br>
                                    <br>
                                  </div>
                                  Now suppose that the B supporters
                                  unilaterally truncate A in the first
                                  scenario, and the Z supporters
                                  unilaterally truncate Y in the second
                                  scenario.  The resulting insincere
                                  ballot sets are<br>
                                  <br>
                                  34 A>B<br>
                                  31 B<br>
                                  35 C<br>
                                  <br>
                                </div>
                                and<br>
                                <br>
                                34 X>Y<br>
                                31 Y<br>
                                35 Z .<br>
                                <br>
                              </div>
                              By neutrality, if our method must pick
                              corresponding winners in the two
                              scenarios, i.e. either A and X, or B and
                              Y, or C and Z.<br>
                              <br>
                            </div>
                            But plurality rules out A and X, while the
                            chicken dilemma criterion  rules out B and
                            Y.  Therefore our method must pick C and Z.<br>
                            <br>
                          </div>
                          That's fine for the first scenario; it means
                          that sincere votes in that scenario could well
                          be a strategic equilibrium.  But making z the
                          winner in the second scenario means that
                          sincere ballots were not a strategic
                          equilibrium position.  The unilateral
                          defection of the Z faction was rewarded by the
                          election of Z.<br>
                          <br>
                        </div>
                        The purpose of this example is to illustrate why
                        sincere votes cannot always be a strategic
                        equilibrium position.<br>
                        <br>
                      </div>
                      Sometimes a faction can take advantage of this
                      problem by making a move (away from sincere
                      ballots) that (if not countered) would improve the
                      outcome from their point of view.  Let's call such
                      a move an offensive move.  Any move by another
                      faction that would make an offensive move
                      unrewarding can be called a defensive move.<br>
                      <br>
                    </div>
                    Now here's the criterion:<br>
                    <br>
                  </div>
                  A method satisfies the Economical Defense Criterion
                  (EDC) if and only if every potential unilateral
                  offensive move away from sincere ballots can be
                  deterred by a smaller unilateral defensive move.<br>
                  <br>
                </div>
                How should we measure the size of a move?<br>
                <br>
              </div>
              It should be by the total number of order changes over all
              changed ballots.  An order reversal of the type X>Y to
              Y>X should count significantly more than a collapse of
              the type X>Y to X=Y or the reverse process from X=Y to
              X>Y.<br>
              <br>
            </div>
            Here's another criterion:<br>
            <br>
          </div>
          A method satisfies the Semi-Sincere Criterion if and only if
          each sincere ballot set can be modified without any order
          reversals into a strategic equilibrium ballot set that
          preserves the sincere winner.<br>
          <br>
        </div>
        This SSC criterion is similar to the FBC, but easier to
        satisfy.  I think it is just as good as the FBC for practical
        purposes, since rational voters will always aim at strategic
        equilibria.<br>
        <div>
          <div>
            <div>
              <div>
                <div>
                  <div>
                    <div>
                      <div>
                        <div>
                          <div>
                            <div>
                              <div>
                                <div>
                                  <div>
                                    <div>
                                      <div>
                                        <div>
                                          <div>
                                            <div><br>
                                              <br>
                                            </div>
                                            <div>Gotta Go!<br>
                                              <br>
                                            </div>
                                            <div>Forest<br>
                                            </div>
                                            <div>
                                              <div>
                                                <div>
                                                  <div>
                                                    <div>
                                                      <div>
                                                        <div>
                                                          <div>
                                                          <div>
                                                          <div>
                                                          <div>
                                                          <div>
                                                          <div
                                                          class="gmail_extra">
                                                          <br>
                                                          </div>
                                                          </div>
                                                          </div>
                                                          </div>
                                                          </div>
                                                          </div>
                                                        </div>
                                                      </div>
                                                    </div>
                                                  </div>
                                                </div>
                                              </div>
                                            </div>
                                          </div>
                                        </div>
                                      </div>
                                    </div>
                                  </div>
                                </div>
                              </div>
                            </div>
                          </div>
                        </div>
                      </div>
                    </div>
                  </div>
                </div>
              </div>
            </div>
          </div>
        </div>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
      <pre wrap="">----
Election-Methods mailing list - see <a class="moz-txt-link-freetext" href="http://electorama.com/em">http://electorama.com/em</a> for list info
</pre>
    </blockquote>
    <br>
  </body>
</html>