<div dir="ltr"><div><div><div><div><div>Chris,<br><br></div>just change 35 A>B to 35 A>>B, and C wins, unless the B faction gets wise and changes to 25 B>>A or 25 B>A, making A the ballot CW.<br><br></div>
The explicit approvals are C40>A35>B25, and since pairwise C beats A beats B, Condorect(approval) whether total approval or approval margins, elects C.<br><br></div>MEA and Smith//Approval also elect C.<br><br></div>
Your instincts were right to begin with!<br><br></div>Forest<br><div><div><div><div><div><div><div><div><div class="gmail_extra"><br><br><div class="gmail_quote"><br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Date: Tue, 29 Apr 2014 15:53:05 +0930<br>
From: "C.Benham" <<a href="mailto:cbenham@adam.com.au">cbenham@adam.com.au</a>><br>
To: em <<a href="mailto:election-methods@electorama.com">election-methods@electorama.com</a>><br>
Subject: [EM] Correction: Approval Margins fails Chicken Dilemma<br>
Message-ID: <<a href="mailto:535F4549.8000908@adam.com.au">535F4549.8000908@adam.com.au</a>><br>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed<br>
<br>
<br>
Oops! I've just discovered that my recent claim that Approval Margins<br>
(and Approval Margins Sort)<br>
fails the CD criterion is wrong. Sorry.<br>
<br>
35 A>B<br>
25 B<br>
40 C<br>
<br>
B>C>A>B Approvals: B60 > C40 > A35 (Approval Margins Sort elects B)<br>
<br>
Approval Margins: A>B -25, B>C +20, C>A +5. B's defeat is the<br>
weakest so B wins.<br>
<br>
The combination of CD and Plurality says that C must win.<br>
<br><br></blockquote></div><br></div></div></div></div></div></div></div></div></div></div>