<div dir="ltr"><div class="gmail_extra">Forest--</div><div class="gmail_extra"> </div><div class="gmail_extra">I haven't yet found a definition of the Banks set that I understand. Is the Banks set a subset of the Smith set. If so, then, from what you said, Jobst's method meets Smith, which means that it meets MMC.</div>
<div class="gmail_extra"> </div><div class="gmail_extra">Then, it has what I consider to be the important properties of Benham and Woodall:</div><div class="gmail_extra"> </div><div class="gmail_extra">MMC + CD + Condorcet.</div>
<div class="gmail_extra"> </div><div class="gmail_extra">...with the added bonus of avoiding criticism about the possibility of nonmonotonicity.</div><div class="gmail_extra"> </div><div class="gmail_extra">Clone Independence is another bonus. Benham and Woodall meet Clone Independence too, don't they?</div>
<div class="gmail_extra"> </div><div class="gmail_extra">So my question is:  Are all Banks set members also members of the Smith set? Does Jobst's method meet Smith?</div><div class="gmail_extra"> </div><div class="gmail_extra">
What is the name of Jobst's method?</div><div class="gmail_extra"> </div><div class="gmail_extra">Is it right to say that a ballot implicitly approves a candidate if it doesn't bottom-rank hir? </div><div class="gmail_extra">
 </div><div class="gmail_extra">(Where a ballot bottom ranks a candidate if it doesn't rank her over anyone, and ranks someone over hir)</div><div class="gmail_extra"> </div><div class="gmail_extra">What is the name of that method introduced by Jobst? Is "Chain-Climbing" its name?</div>
<div class="gmail_extra"> </div><div class="gmail_extra">Michael Ossipoff</div><div class="gmail_extra"> </div><div class="gmail_extra"> </div><div class="gmail_extra"><br><br> </div></div>