CMJ (continuous majority judgment) is an MJ-like system using the numeric tiebreaker*:<div><br></div><div>Median¹ + ((Votes_above_median - Votes_below_median) / (2 * Votes_at_median))</div><div><br></div><div><div>The CMJ formula is actually a simplified version of the trimmed-mean-like formula:</div>
<div><br></div><div>Median + ((Votes_above_median - Votes_below_median) / (Votes_at_median + |Votes_above_median - Votes_below_median|))</div><div><br></div><div>This full version is not equivalent algebraically, and it gives slightly different scores; but it is fully equivalent in all cases in terms of the order of candidates and specifically the winner.</div>
</div><div><br></div><div>A similar formula can be given for MJ itself:</div><div><br></div><div>Median + ((Votes_above_median - Votes_below_median) / |Votes_above_median - Votes_below_median|) * ((Votes_at_median - |Votes_above_median - Votes_below_median| + 2) / (4 * ((Votes_at_median - |Votes_above_median - Votes_below_median| + 1))</div>
<div><br></div><div>This is equivalent to a subset of the MJ tiebreaker. That is, if it breaks a tie it always does so in accordance with MJ, and it breaks most of the ties that MJ does; but if the MJ tiebreaker has to cross more than one rating boundary to break the tie, then this formula will not break the tie.</div>
<div><br></div><div>I suspect that the above formula could be simplified further.</div><div><br></div><div>Jameson Quinn</div><div><br></div><div>¹ "Median" is the median grade, converted to an integer</div>