<table cellspacing="0" cellpadding="0" border="0" ><tr><td valign="top" style="font: inherit;"><br>Markus is right.<br><br>One way of retaining monotonicity, I think, is to replace the Sets with objects that record the number of times that a A has beaten B.<br><br>Then for the pair ordering<br>A>C, B>C<br>C>D<br>D>A, D>B, A>B<br><br>Affirming A>C and B> C<br>A(W):A(W)<br>B(W):B(W)<br>C(L):A(W),B(W),C(L)<br>D(W):D(W)<br><br>Affirming C>D<br>A(W):A(W)<br>
B(W):B(W)<br>
C(L):A(W),B(W),C(L)<br>
D(L):A(W), B(W), C(L), D(L)<br><br>Affirming D>A, D>B, A>B<br>A(W):A(W) [A(W), B(W), C(L), D(L)]<br>
B(W):B(W) [A(W), B(W), C(L), D(L)]A(W)<br>
C(L):A(W),B(W),C(L)[A(W), B(W), C(L), D(L)][A(W), B(W), C(L), D(L)]<br>
D(L):A(W), B(W), C(L), D(L)[A(W), B(W), C(L), D(L)][A(W), B(W), C(L), D(L)]<br>Now remove equal numbers of A from B and B from A.<br>A(W):A(W) [A(W), C(L), D(L)]<br>
B(W):B(W) [A(W), B(W), C(L), D(L)]<br>
C(L):A(W),B(W),C(L)[A(W), B(W), C(L), D(L)][A(W), B(W), C(L), D(L)]<br>
D(L):A(W), B(W), C(L), D(L)[A(W), B(W), C(L), D(L)][A(W), B(W), C(L), D(L)]<br>B is reclassified a Loser<br>A(W):A(W) [A(W), C(L), D(L)]<br>
B(L):B(L) [A(W), B(L), C(L), D(L)]<br>
C(L):A(W),B(L),C(L)[A(W), B(L), C(L), D(L)][A(W), B(L), C(L), D(L)]<br>
D(L):A(W), B(L), C(L), D(L)[A(W), B(L), C(L), D(L)][A(W), B(L), C(L), D(L)]<br>A wins<br><br><br><br><br><br><br><blockquote style="border-left: 2px solid rgb(16, 16, 255); margin-left: 5px; padding-left: 5px;"><div id="yiv1477194018"><table border="0" cellpadding="0" cellspacing="0"><tbody><tr><td style="font:inherit;" valign="top"><br></td></tr></tbody></table></div></blockquote></td></tr></table>