<table cellspacing="0" cellpadding="0" border="0" ><tr><td valign="top" style="font: inherit;">Hi Jameson,<BR><BR>--- En date de : <B>Mar 11.10.11, Jameson Quinn <I><jameson.quinn@gmail.com></I></B> a écrit :<BR>
<BLOCKQUOTE style="PADDING-LEFT: 5px; MARGIN-LEFT: 5px; BORDER-LEFT: rgb(16,16,255) 2px solid">
<DIV> </DIV>
<DIV>Note that the "more Condorcet-like than Condorcet" is only true for Range if voters are strategic <I>and somewhat knowledgeable about the polls</I>. </DIV>
<DIV> </DIV></BLOCKQUOTE>
<DIV>I'm curious whether you believe the "more Condorcet-like than Condorcet" claim </DIV>
<DIV>based on Warren's IEVS work, or for some other reason. Because in IEVS, the polls, </DIV>
<DIV>if we call them polls, provide arbitrary data. Nobody is actually polled.</DIV>
<DIV> </DIV>
<DIV>What do you say happens if Range voters are strategic but *not* knowledgeable?</DIV>
<DIV>Does that mean they place their "approval cutoffs" potentially arbitrarily?</DIV>
<DIV> </DIV>
<DIV>If so, I think that would still beat all the rank methods with strategic but not-</DIV>
<DIV>knowledgeable voters. In that situation every ballot's first preference could be nearly</DIV>
<DIV>arbitrary, because in IEVS strategic rank voters *always* use compromise.</DIV>
<DIV> </DIV>
<DIV>Kevin Venzke</DIV>
<DIV> </DIV></td></tr></table>