<div>If all you care about are margins, then you can build up the pairwise array from "atomic" pairs of voters.</div><div><br></div><div>For example, I consider ABCD and DCAB to be an atom for A>B because all other pairwise races cancel out, yielding the following margins matrix:</div>
<div><br></div><div><div> | A | B | C | D |</div><div>===+=====+=====+=====+=====+</div><div> A | 0 | +2 | 0 | 0 |</div><div>---+-----+-----+-----+-----+</div><div> B | -2 | 0 | 0 | 0 |</div><div>---+-----+-----+-----+-----+</div>
<div> C | 0 | 0 | 0 | 0 |</div><div>---+-----+-----+-----+-----+</div><div> D | 0 | 0 | 0 | 0 |</div><div>---+-----+-----+-----+-----+</div></div><div><br></div><div>But I don't know how this fits in with the way you calculate approval.</div>
<div><br></div><div>~ Andy Jennings</div><div><br></div><div><br></div><br><br><div class="gmail_quote">On Mon, Oct 10, 2011 at 2:51 PM, Ted Stern <span dir="ltr"><<a href="mailto:araucaria.araucana@gmail.com">araucaria.araucana@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">Hi,<br>
<br>
Say I have a pairwise array that looks like<br>
<br>
| A | B | C | D |<br>
===+=====+=====+=====+=====+<br>
A | 60 | 45 | 46 | 60 |<br>
---+-----+-----+-----+-----+<br>
B | 55 | 55 | 55 | 49 |<br>
---+-----+-----+-----+-----+<br>
C | 54 | 45 | 54 | 52 |<br>
---+-----+-----+-----+-----+<br>
D | 40 | 51 | 48 | 51 |<br>
---+-----+-----+-----+-----+<br>
<br>
For this example, I assume that a tie between candidates is counted as<br>
one vote for each candidate, and the diagonal entry is equal to the<br>
maximum non-diagonal entry on that row. This is a way to extract<br>
Approval from the pairwise array.<br>
<br>
The exact numbers are not important. What really matters to me is<br>
that the candidates in descending order of approval are A, B, C, D,<br>
and the pairwise outcomes look like<br>
<br>
| A | B | C | D |<br>
===+=====+=====+=====+=====+<br>
A | - | L | L | W |<br>
---+-----+-----+-----+-----+<br>
B | W | - | W | L |<br>
---+-----+-----+-----+-----+<br>
C | W | L | - | W |<br>
---+-----+-----+-----+-----+<br>
D | L | W | L | - |<br>
---+-----+-----+-----+-----+<br>
<br>
The reason I'm looking for a set of ranked ballots that lead to this<br>
outcome is that I believe it might be a counterexample to Forest<br>
Simmons' Enhanced DMC proposal.<br>
<br>
If there is a set of rankings that lead to this array, then B would be<br>
the winner under Schulze, Ranked Pairs, River and DMC, but Enhanced<br>
DMC would pick either A or C.<br>
<br>
Ted<br>
<font color="#888888">--<br>
araucaria dot araucana at gmail dot com<br>
<br>
----<br>
Election-Methods mailing list - see <a href="http://electorama.com/em" target="_blank">http://electorama.com/em</a> for list info<br>
</font></blockquote></div><br>