<br><br><div class="gmail_quote">On Thu, Jun 17, 2010 at 1:06 AM, Juho Laatu <span dir="ltr"><<a href="mailto:juho.laatu@gmail.com">juho.laatu@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
<div style="word-wrap:break-word"><div class="im"><div><div><div><span style="font-family:arial, sans-serif;font-size:13px;border-collapse:collapse"><div><div><span style="border-collapse:separate;font-family:Helvetica;font-size:medium">On Jun 16, 2010, at 11:49 PM, Peter Zbornik wrote:</span></div>
</div></span></div></div></div></div><div><div class="im"><br><blockquote type="cite">Juho,<div><br></div><div>we have the example</div><div><span style="font-family:arial, sans-serif;font-size:13px;border-collapse:collapse">49: A<br>
48: B>C<br>3: C>B</span><br><div><br> </div><div>you wrote to me:</div><div><span style="font-family:arial, sans-serif;font-size:13px;border-collapse:collapse"><div><div>"- C loses to B, 3-48. In winning votes the strength of this loss is 48.</div>
</div><div><div>- B loses to A, 48-49. In winning votes the strength of this loss is 49.</div></div><div><div>- A loses to C, 49-51. In winning votes the strength of this loss is 51."</div></div><div><br></div><div>
Thus: "If the three C voters will truncate then they will win instead of B in winning votes based Condorcet methods."</div> <div><br></div><div>This is correct, if proportional completion is not used (see page 42 in <span style="border-collapse:separate;font-family:arial;font-size:small"><a href="http://m-schulze.webhop.net/schulze2.pdf" target="_blank">http://m-schulze.webhop.net/schulze2.pdf</a>)</span></div>
<div><span style="border-collapse:separate;font-family:arial;font-size:small">If proportional completion is used (which I would recommend) then B wins.</span></div></span></div></div></blockquote><div><br></div></div><div>
Yes, the example applies to (typical) winning votes based methods. Other approaches like margins and the referenced approach may provide different results.</div><div class="im"><br><blockquote type="cite"><div><div><span style="font-family:arial, sans-serif;font-size:13px;border-collapse:collapse"><div>
<span style="border-collapse:separate;font-family:arial;font-size:small"><br> </span></div><div><span style="border-collapse:separate;font-family:arial;font-size:small">If proportional completion is used, then we need to fill in the preferences of the ones who did not vote:</span></div>
<div><span style="border-collapse:separate;font-family:arial;font-size:small">We have 100 voters.</span></div><div><span style="border-collapse:separate;font-family:arial;font-size:small"><span style="font-family:arial, sans-serif;font-size:13px;border-collapse:collapse">- C loses to B, 3-48, means 49 voters did not vote. We split each voter into two: the first has weight 3/51 of a vote and the second 48/51, which gives a total score of 49*3/51+3 vs 49*48/51+48</span></span></div>
<div><span style="border-collapse:separate;font-family:arial;font-size:small"><span style="font-family:arial, sans-serif;font-size:13px;border-collapse:collapse">- B loses to A, 48-49, means 3 voters did not vote. We split each voter into two: the first has weight 48/97 and the second 49/97, which gives a total score of </span></span>3*48/97+48 vs 3*49/97+49</div>
<div>- A loses to C, 49-51, means all voters voted.</div><div><br></div><div>Thus after the proportional completion, the vote tally is the following:</div><div>- C loses to B, 5,88-94,12. In winning votes the strength of this loss is 94,12.</div>
<div>- B loses to A, 49,48-50,52. In winning votes the strength of this loss is 50,52. (delete this link first)</div></span></div></div></blockquote><div><br></div></div><div>What link?</div></div></div></blockquote><div>
<a href="http://en.wikipedia.org/wiki/Schulze_method#The_Schwartz_set_heuristic">http://en.wikipedia.org/wiki/Schulze_method#The_Schwartz_set_heuristic</a>, point 3 </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
<div style="word-wrap:break-word"><div><div class="im"><br><blockquote type="cite"><div><div><span style="font-family:arial, sans-serif;font-size:13px;border-collapse:collapse"><div>- A loses to C, 49-51. In winning votes the strength of this loss is 51.</div>
<div><br></div></span><div> Thus B wins if proportional completion is used. C wins without proportional completion.</div></div></div></blockquote><div><br></div></div><div>There are many different approaches to measuring the preference strength of the pairwise comparisons. Winning votes and margins are the most common ones. The referenced approach would be a third approach. It seems to be the proportion of the given votes. Correct?</div>
</div></div></blockquote><div>Yes, the proportion is the same and the result is scaled up to the number of voters, and is suggested by Markus Schulze as mentioned below. </div><div>Something similar (splitting up observations into two complementary) is done in statistics, when measuring the predictive strength of a logistic regression function on validation data.</div>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;"><div style="word-wrap:break-word"><div><div><br></div><div><span style="border-collapse:collapse;font-family:arial, sans-serif;font-size:13px">94,12 = </span><span style="border-collapse:collapse;font-family:arial, sans-serif;font-size:13px">100/(3/</span><span style="border-collapse:collapse;font-family:arial, sans-serif;font-size:13px">48</span><span style="border-collapse:collapse;font-family:arial, sans-serif;font-size:13px">+1), i.e. the proportion of the preferences (48:3) scaled in another way (100/(1/x+1))</span></div>
<div><br></div><div>(Shortly back to the original question. Unfortunately I don't have any interesting proportion specific truncation related examples or properties in my ind right now.)</div><div><br></div><font color="#888888"><div>
<span style="border-collapse:collapse;font-family:arial, sans-serif;font-size:13px">Juho</span></div></font><div class="im"><div><div><div><span style="font-family:arial, sans-serif;font-size:13px;border-collapse:collapse"><div>
<font face="Helvetica"><span style="border-collapse:separate;font-size:medium"><font face="arial, sans-serif" size="3"><span style="border-collapse:collapse;font-size:13px"><br></span></font></span></font></div><div><font face="Helvetica"><span style="border-collapse:separate;font-size:medium"><font face="arial, sans-serif" size="3"><span style="border-collapse:collapse;font-size:13px"><br>
</span></font></span></font></div><div><div><br></div></div><div><font face="Helvetica"><span style="border-collapse:separate;font-size:medium"><font face="arial, sans-serif" size="3"><span style="border-collapse:collapse;font-size:13px"><br>
</span></font></span></font></div></span></div></div></div><blockquote type="cite"><div><div><div><br></div><div>Best regards</div><div>Peter Zborník</div><br><div class="gmail_quote">On Wed, Jun 16, 2010 at 9:35 PM, Juho <span dir="ltr"><<a href="mailto:juho.laatu@gmail.com" target="_blank">juho.laatu@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div>On Jun 16, 2010, at 9:39 PM, Peter Zbornik wrote:<br> <br> <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
In what situations will bullet voting help my candidate to win (considering the advanced Condorcet systems)?<br> </blockquote> <br></div> Here's one more example where a reasonably small number of strategic voters can change the result.<br>
<br> 49: A<br> 48: B>C<br> 3: C>B<br> <br> If the three C voters will truncate then they will win instead of B in winning votes based Condorcet methods.<br><font color="#888888"> <br> Juho</font><div><div></div><div>
<br> <br> <br> <br> <br> <br> ----<br> Election-Methods mailing list - see <a href="http://electorama.com/em" target="_blank">http://electorama.com/em</a> for list info<br> </div></div></blockquote></div><br></div></div> ----<br>
Election-Methods mailing list - see <a href="http://electorama.com/em" target="_blank">http://electorama.com/em</a> for list info<br></blockquote></div></div><br></div><br>----<br>
Election-Methods mailing list - see <a href="http://electorama.com/em" target="_blank">http://electorama.com/em</a> for list info<br>
<br></blockquote></div><br>