<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div><div><div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><div><div><span class="Apple-style-span" style="border-collapse: separate; font-family: Helvetica; font-size: medium; ">On Jun 16, 2010, at 11:49 PM, Peter Zbornik wrote:</span></div></div></span></div></div></div><div><br class="Apple-interchange-newline"><blockquote type="cite">Juho,<div><br></div><div>we have the example</div><div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; ">49: A<br>48: B>C<br>3: C>B</span><br><div><br> </div><div>you wrote to me:</div><div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><div><div>"- C loses to B, 3-48. In winning votes the strength of this loss is 48.</div> </div><div><div>- B loses to A, 48-49. In winning votes the strength of this loss is 49.</div></div><div><div>- A loses to C, 49-51. In winning votes the strength of this loss is 51."</div></div><div><br></div><div>Thus: "If the three C voters will truncate then they will win instead of B in winning votes based Condorcet methods."</div> <div><br></div><div>This is correct, if proportional completion is not used (see page 42 in <span class="Apple-style-span" style="border-collapse: separate; font-family: arial; font-size: small; "><a href="http://m-schulze.webhop.net/schulze2.pdf">http://m-schulze.webhop.net/schulze2.pdf</a>)</span></div> <div><span class="Apple-style-span" style="border-collapse: separate; font-family: arial; font-size: small; ">If proportional completion is used (which I would recommend) then B wins.</span></div></span></div></div></blockquote><div><br></div><div>Yes, the example applies to (typical) winning votes based methods. Other approaches like margins and the referenced approach may provide different results.</div><br><blockquote type="cite"><div><div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><div><span class="Apple-style-span" style="border-collapse: separate; font-family: arial; font-size: small; "><br> </span></div><div><span class="Apple-style-span" style="border-collapse: separate; font-family: arial; font-size: small; ">If proportional completion is used, then we need to fill in the preferences of the ones who did not vote:</span></div> <div><span class="Apple-style-span" style="border-collapse: separate; font-family: arial; font-size: small; ">We have 100 voters.</span></div><div><span class="Apple-style-span" style="border-collapse: separate; font-family: arial; font-size: small; "><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; ">- C loses to B, 3-48, means 49 voters did not vote. We split each voter into two: the first has weight 3/51 of a vote and the second 48/51, which gives a total score of 49*3/51+3 vs 49*48/51+48</span></span></div> <div><span class="Apple-style-span" style="border-collapse: separate; font-family: arial; font-size: small; "><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; ">- B loses to A, 48-49, means 3 voters did not vote. We split each voter into two: the first has weight 48/97 and the second 49/97, which gives a total score of </span></span>3*48/97+48 vs 3*49/97+49</div> <div>- A loses to C, 49-51, means all voters voted.</div><div><br></div><div>Thus after the proportional completion, the vote tally is the following:</div><div>- C loses to B, 5,88-94,12. In winning votes the strength of this loss is 94,12.</div> <div>- B loses to A, 49,48-50,52. In winning votes the strength of this loss is 50,52. (delete this link first)</div></span></div></div></blockquote><div><br></div><div>What link?</div><br><blockquote type="cite"><div><div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><div>- A loses to C, 49-51. In winning votes the strength of this loss is 51.</div><div><br></div></span><div> Thus B wins if proportional completion is used. C wins without proportional completion.</div></div></div></blockquote><div><br></div><div>There are many different approaches to measuring the preference strength of the pairwise comparisons. Winning votes and margins are the most common ones. The referenced approach would be a third approach. It seems to be the proportion of the given votes. Correct?</div><div><br></div><div><span class="Apple-style-span" style="border-collapse: collapse; font-family: arial, sans-serif; font-size: 13px; ">94,12 = </span><span class="Apple-style-span" style="border-collapse: collapse; font-family: arial, sans-serif; font-size: 13px; ">100/(3/</span><span class="Apple-style-span" style="border-collapse: collapse; font-family: arial, sans-serif; font-size: 13px; ">48</span><span class="Apple-style-span" style="border-collapse: collapse; font-family: arial, sans-serif; font-size: 13px; ">+1), i.e. the proportion of the preferences (48:3) scaled in another way (100/(1/x+1))</span></div><div><br></div><div>(Shortly back to the original question. Unfortunately I don't have any interesting proportion specific truncation related examples or properties in my ind right now.)</div><div><br></div><div><span class="Apple-style-span" style="border-collapse: collapse; font-family: arial, sans-serif; font-size: 13px; ">Juho</span></div><div><div><div><span class="Apple-style-span" style="font-family: arial, sans-serif; font-size: 13px; border-collapse: collapse; "><div><font class="Apple-style-span" face="Helvetica"><span class="Apple-style-span" style="border-collapse: separate; font-size: medium;"><font class="Apple-style-span" face="arial, sans-serif" size="3"><span class="Apple-style-span" style="border-collapse: collapse; font-size: 13px;"><br></span></font></span></font></div><div><font class="Apple-style-span" face="Helvetica"><span class="Apple-style-span" style="border-collapse: separate; font-size: medium;"><font class="Apple-style-span" face="arial, sans-serif" size="3"><span class="Apple-style-span" style="border-collapse: collapse; font-size: 13px;"><br></span></font></span></font></div><div><div><br></div></div><div><font class="Apple-style-span" face="Helvetica"><span class="Apple-style-span" style="border-collapse: separate; font-size: medium;"><font class="Apple-style-span" face="arial, sans-serif" size="3"><span class="Apple-style-span" style="border-collapse: collapse; font-size: 13px;"><br></span></font></span></font></div></span></div></div></div><blockquote type="cite"><div><div><div><br></div><div>Best regards</div><div>Peter Zborník</div><br><div class="gmail_quote">On Wed, Jun 16, 2010 at 9:35 PM, Juho <span dir="ltr"><<a href="mailto:juho.laatu@gmail.com">juho.laatu@gmail.com</a>></span> wrote:<br> <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;"><div class="im">On Jun 16, 2010, at 9:39 PM, Peter Zbornik wrote:<br> <br> <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"> In what situations will bullet voting help my candidate to win (considering the advanced Condorcet systems)?<br> </blockquote> <br></div> Here's one more example where a reasonably small number of strategic voters can change the result.<br> <br> 49: A<br> 48: B>C<br> 3: C>B<br> <br> If the three C voters will truncate then they will win instead of B in winning votes based Condorcet methods.<br><font color="#888888"> <br> Juho</font><div><div></div><div class="h5"><br> <br> <br> <br> <br> <br> ----<br> Election-Methods mailing list - see <a href="http://electorama.com/em" target="_blank">http://electorama.com/em</a> for list info<br> </div></div></blockquote></div><br></div></div> ----<br>Election-Methods mailing list - see <a href="http://electorama.com/em">http://electorama.com/em</a> for list info<br></blockquote></div><br></body></html>