<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div><div>On May 12, 2010, at 9:58 PM, Dr. Carl S. Milsted, Jr. wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: 34px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0; "><div bgcolor="white" style="font-family: Arial; font-size: 12pt; "><div><span style="font-size: 12pt; ">Condorcet is not simpler! Describing the results of a Condorcet election requires an NxN matrix. Makes my eyes glaze and I have a math degree. Most citizens do not. The potential for cycles is also frightening. Bush/Gore was bad enough.</span></div></div></span></blockquote><div><br></div>So a BS was the limit of what I could afford. Years after that I finally got to see a real computer and my later life included maintenance and language design for such. None of which makes my eyes glaze more or less when I think of explaining how Condorcet uses such matrices to a reasonably intelligent audience.</div><div><br></div><div>What some are doing with cycles is a bigger challenge, but understanding their potential should be adequate and possible for most.<br><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: 34px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0; "><div bgcolor="white" style="font-family: Arial; font-size: 12pt; "><div> </div><div><span style="font-size: 12pt; ">But even the ballot for Condorcet is complicated. Writing in the numerical ordering for a ten candidate ballot is challenging. You better allow pencils, since we'll need the ability to erase -- which is not good if you like tamper proof ballots.</span></div></div></span></blockquote><div><br></div>For either Range or Condorcet, and desiring to vote for more than 2 or 3 candidates, it makes sense to prepare before going near a ballot. Any ballot design usable for Range would be suitable for the single digit numbers adequate for Condorcet.</div><div><br></div><div>The deciding? Ordering per magnitude of liking does it for Condorcet; Range requires distributing ratings to get desired gaps between them.<br><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: 34px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0; "><div bgcolor="white" style="font-family: Arial; font-size: 12pt; "><div> </div><div><span style="font-size: 12pt; ">Netflix manages to have a user friendly form for ordering (time) preference for movies, but it requires quite a bit of JavaScript and animation to work. Would require rather sophisticated voting machines to manage that interface.</span></div></div></span></blockquote><br>Above I cover designing a ballot and reading what the voter did. Here deciding what it means is unique to Condorcet, but not especially complex programming<br><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: 34px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0; "><div bgcolor="white" style="font-family: Arial; font-size: 12pt; "><div> </div><div><span style="font-size: 12pt; ">Range voting can be done using the same "fill in the dot" interface we all remember from standardized tests. I guess we still have some people too old to have taken such, but everyone below 50 at least has mastered this interface. Range voting is much simpler than Condorcet.</span></div></div></span></blockquote><div><br></div>IRV usage of 3 ranks demonstrates such to be usable for Condorcet. Range NEEDS more than 3 ratings. Condorcet would be happy with as many ranks as get offered to Range ratings.<br><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: 34px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0; "><div bgcolor="white" style="font-family: Arial; font-size: 12pt; "><div> </div><div><span style="font-size: 12pt; ">Moreover, I have experimented with both Range and Condorcet at the club meeting level. Condorcet was a nightmare. Range was easier than Robert's Rules.</span></div></div></span></blockquote><div><br></div>Again, ballot design and reading what got voted is at least as easy for Condorcet as for Range. Processing what got read is different, but not especially difficult for Condorcet (unless given an especially complex set of rules for resolving cycles).</div><div><br></div><div>Dave Ketchum<br><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: 'Times New Roman'; font-size: 34px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0; "><div bgcolor="white" style="font-family: Arial; font-size: 12pt; "><div><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; ">On Wed, 12 May 2010 19:00:14 -0400, Dave Ketchum wrote:</span></div><div><span style="font-size: 12pt; color: maroon; "> There is considerable agreement that awarding the CW as winner is</span></div><div><span style="font-size: 12pt; color: maroon; "> desirable - yet also claims that some method deserves use in spite of</span></div><div><span style="font-size: 12pt; color: maroon; "> its inability to find the CW.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> I back Condorcet:</span></div><div><span style="font-size: 12pt; color: red; "> Conceding that ability to resolve cycles is part of deciding</span></div><div><span style="font-size: 12pt; color: maroon; "> which method to use.</span></div><div><span style="font-size: 12pt; color: red; "> Agreeing that having several winners in a single race, such as</span></div><div><span style="font-size: 12pt; color: maroon; "> of legislature members, requires a different method.</span></div><div><span style="font-size: 12pt; color: red; "> That Condorcet ranking lets the voter rank several candidates,</span></div><div><span style="font-size: 12pt; color: maroon; "> assigning equal liking and/or showing liking some more than others.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Some comparisons:</span></div><div><span style="font-size: 12pt; color: red; "> IRV deserves no mention, except as being less desirable than</span></div><div><span style="font-size: 12pt; color: maroon; "> methods being backed - unlike IRV, Condorcet uses all that the voters</span></div><div><span style="font-size: 12pt; color: maroon; "> say.</span></div><div><span style="font-size: 12pt; color: red; "> Score/Range, with its ratings, is competitive with Condorcet,</span></div><div><span style="font-size: 12pt; color: maroon; "> though I claim Condorcet ranking is simpler.</span></div><div><span style="font-size: 12pt; color: red; "> Bucklin also competes, with its own complexity.</span></div><div><span style="font-size: 12pt; color: red; "> Plurality and Approval - simpler. Any voter finding either of</span></div><div><span style="font-size: 12pt; color: maroon; "> these acceptable can vote such with Condorcet - these simply being</span></div><div><span style="font-size: 12pt; color: maroon; "> part of the ability of Condorcet.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Races vary as to the thinking they inspire in voters. Note that</span></div><div><span style="font-size: 12pt; color: maroon; "> Condorcet requires no extra effort for Plurality (bullet) voting or</span></div><div><span style="font-size: 12pt; color: maroon; "> for approving, but supports full use of its ability for any voter</span></div><div><span style="font-size: 12pt; color: maroon; "> desiring this, permitting all in the same races.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Ballot must support ranking, voters need understanding, and many have</span></div><div><span style="font-size: 12pt; color: maroon; "> some of this via IRV or Bucklin.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Now some thought about keeping it simple, yet doable.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> I will lean toward Ranked Pairs with margins, but amending toward</span></div><div><span style="font-size: 12pt; color: maroon; "> other Condorcet methods should be doable.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Voting: Voter can rank one or more candidates.</span></div><div><span style="font-size: 12pt; color: red; "> Bullet voting, ala Plurality - simply rank one. For the debate</span></div><div><span style="font-size: 12pt; color: maroon; "> I claim this is a suitable vote for many voters in many races.</span></div><div><span style="font-size: 12pt; color: red; "> Approval - just give them the same rank.</span></div><div><span style="font-size: 12pt; color: red; "> Condorcet - Equal ranking permitted. Counters care only which</span></div><div><span style="font-size: 12pt; color: maroon; "> of any pair of candidates ranks higher, not how voter decides on</span></div><div><span style="font-size: 12pt; color: maroon; "> ranking.</span></div><div><span style="font-size: 12pt; color: red; "> Rank below unranked candidates? We sometimes wish such for</span></div><div><span style="font-size: 12pt; color: maroon; "> those we most hate - not difficult if we figure out how voter should</span></div><div><span style="font-size: 12pt; color: maroon; "> ask for such.</span></div><div><span style="font-size: 12pt; color: red; "> Rank, but number not clear - rules could have counters treat</span></div><div><span style="font-size: 12pt; color: maroon; "> such as a rank below lowest real rank.</span></div><div><span style="font-size: 12pt; color: red; "> Write-ins permitted (if few write-ins expected, counters may</span></div><div><span style="font-size: 12pt; color: maroon; "> lump all such as if a single candidate - if assumption correct the</span></div><div><span style="font-size: 12pt; color: maroon; "> count verifies it; if incorrect, must recount - if many expected for</span></div><div><span style="font-size: 12pt; color: maroon; "> one person, that name could be added in for counting).</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Counting: An N array makes this simpler - simply count each ranked</span></div><div><span style="font-size: 12pt; color: maroon; "> candidate into the array. When this is later copied into the N*N</span></div><div><span style="font-size: 12pt; color: maroon; "> matrix it will supply exactly what is needed for pairs with no</span></div><div><span style="font-size: 12pt; color: maroon; "> ranking, for pairs with one ranked, and for winner if both ranked.</span></div><div><span style="font-size: 12pt; color: red; "> For pairs with a winner and loser, give loser a negative count</span></div><div><span style="font-size: 12pt; color: maroon; "> now to adjust; for ties you can leave both winning; or mark both</span></div><div><span style="font-size: 12pt; color: maroon; "> losing via negative counts.</span></div><div><span style="font-size: 12pt; color: red; "> (For example, a ballot with 3 ranks gets 3 counts in N, and</span></div><div><span style="font-size: 12pt; color: maroon; "> adjustments for 3 pairs in N*N - even if there are a dozen pairs on</span></div><div><span style="font-size: 12pt; color: maroon; "> the ballot)</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Completing matrix N*N:</span></div><div><span style="font-size: 12pt; color: red; "> I had thought of doing adjustments if N was different in</span></div><div><span style="font-size: 12pt; color: maroon; "> different matrices. Having trouble with picking a need for this, but</span></div><div><span style="font-size: 12pt; color: maroon; "> it is doable - add an empty element to N and an empty row and column</span></div><div><span style="font-size: 12pt; color: maroon; "> to N*N.</span></div><div><span style="font-size: 12pt; color: red; "> Shortest path is to sum all the matrices and all the arrays.</span></div><div><span style="font-size: 12pt; color: maroon; "> Then add each array element into its matrix row as wins by its</span></div><div><span style="font-size: 12pt; color: maroon; "> candidate in each of its pairs.</span></div><div><span style="font-size: 12pt; color: red; "> Can want a matrix for a district - same idea as above.</span></div><div><span style="font-size: 12pt; color: red; "> Either way the diagonals (A,A thru N,N) should be zero - make</span></div><div><span style="font-size: 12pt; color: maroon; "> them thus.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Finding the winner. What I suggest here is less labor than gets</span></div><div><span style="font-size: 12pt; color: maroon; "> described for many methods, especially if there are many candidates -</span></div><div><span style="font-size: 12pt; color: maroon; "> so, for candidates A-N:</span></div><div><span style="font-size: 12pt; color: red; "> A single loss disqualifies a candidate from being CW, so start</span></div><div><span style="font-size: 12pt; color: maroon; "> with A vs B. If A loses, B continues; if B loses A continues; for a</span></div><div><span style="font-size: 12pt; color: maroon; "> tie try a different pair among not-yet-losers (if any; else punt).</span></div><div><span style="font-size: 12pt; color: red; "> Check final row when all but one have lost. If no losers found</span></div><div><span style="font-size: 12pt; color: maroon; "> we have the CW; else we have a cycle member.</span></div><div><span style="font-size: 12pt; color: red; "> By checking each cycle member found for such losers, we make a</span></div><div><span style="font-size: 12pt; color: maroon; "> list of all such (for the simplest cycles each loses to one other).</span></div><div><span style="font-size: 12pt; color: red; "> There are many methods for resolving cycles. For RP I see</span></div><div><span style="font-size: 12pt; color: maroon; "> deleting the smallest margins from the list until what remains is not</span></div><div><span style="font-size: 12pt; color: maroon; "> a cycle, but does identify a winner.</span><span style="font-size: 12pt; "><br><br></span></div><div><span style="font-size: 12pt; color: maroon; "> Dave Ketchum</span></div></div></span></blockquote></div><br></body></html>