<html><head><base href="x-msg://112/"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div><div>On Nov 16, 2009, at 11:53 AM, Stéphane Rouillon wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; font-family: 'Lucida Bright'; font-size: medium; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; "><div class="hmmessage" style="font-size: 10pt; font-family: Verdana; ">Would this suggest it could be possible to overcome Arrow's theorem using range ballots?<br>I do not want to say Arrow's theorem is false. All I ask is:<br>Are prefential ballots one of the hypothesis used in Arrow's theorem proof?<br></div></span></blockquote><div><br></div><div>Because the context of Arrow's theorem is ordinal ballots, it doesn't apply (at least not directly) to range voting. Arrow felt that there were good and sufficient reasons to exclude cardinal preferences from consideration, and most social choice thinking has followed suit. That exclusion was not original with Arrow.</div><br><blockquote type="cite"><span class="Apple-style-span" style="border-collapse: separate; font-family: 'Lucida Bright'; font-size: medium; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; "><div class="hmmessage" style="font-size: 10pt; font-family: Verdana; "> <br>> From:<span class="Apple-converted-space"> </span><a href="mailto:jlundell@pobox.com">jlundell@pobox.com</a><br>> Date: Mon, 16 Nov 2009 11:43:10 -0600<br>> To:<span class="Apple-converted-space"> </span><a href="mailto:andru@cs.cornell.edu">andru@cs.cornell.edu</a><br>> CC:<span class="Apple-converted-space"> </span><a href="mailto:election-methods@electorama.com">election-methods@electorama.com</a><br>> Subject: Re: [EM] Anyone got a good analysis on limitations of approval andrange voting?<br>><span class="Apple-converted-space"> </span><br>> On Nov 16, 2009, at 10:53 AM, Andrew Myers wrote:<br>><span class="Apple-converted-space"> </span><br>> > Abd ul-Rahman Lomax wrote:<br>> >> Notice that the requirement of Arrow that "social preferences be insensitive to variations in the intensity of preferences" was preposterous. Arrow apparently insisted on this because he believed that it was impossible to come up with any objective measure of preference intensity; however, that was simply his opinion and certainly isn't true where there is a cost to voting.<span class="Apple-converted-space"> </span><br>> > Arrow doesn't impose that requirement; that's not what IIA says.<br>><span class="Apple-converted-space"> </span><br>> This is in part Arrow's justification for dealing only with ordinal (vs cardinal) preferences in the Possibility Theorem. Add may label it preposterous, but it's the widely accepted view. Mine as well.<br>> ----<br>> Election-Methods mailing list - see<span class="Apple-converted-space"> </span><a href="http://electorama.com/em">http://electorama.com/em</a><span class="Apple-converted-space"> </span>for list info<br></div></span></blockquote></div><br><div><br></div></body></html>