I believe that using Range ballots, renormalized on the Smith set as a Condorcet tiebreaker, is a very good system by many criteria. I'm of course <a href="http://lists.electorama.com/pipermail/election-methods-electorama.com/2005-January/014469.html">not</a> the first one to propose this method, but I'd like to justify and analyze it further.<br>
<br><div>I call the system Condorcet/Range DSV because it can be conceived as a kind of Declared Strategy Voting system, which rationally strategizes voters' ballots for them assuming that they have correct but not-quite-complete information about all other voters. Let me explain.</div>
<div><br>I have been looking into fully-rational DSV methods using Range ballots both as input and as the underlying method in which strategies play out. It turns out to be impossible, as far as I can tell, to get a stable, deterministic, rational result from strategy when there is no Condorcet winner. (Assume there's a stable result, A. Since A is not a cond. winner, there is some B which beats A by a majority. If all B>A voters bullet vote for B then B is a Condorcet winner, and so wins. Thus there exists an offensive strategy. This proof is not fully general because it neglects defensive strategies, but in practice trying to work out a coherent, stable DSV which includes defensive strategies seems impossible to me.) Note that, on the other hand, there MUST exist a stable probabilistic result, that is, a Nash equilibrium.<br>
<br>Let's take the case of a 3-candidate Smith set to start with. (This simplifies things drastically and I've never seen a real-world example of a larger set.) In the Nash equilibrium, all three candidates have a nonzero probability of winning (or at least, are within one vote of having such a probability). Voters are dissuaded from using offensive strategy by the real probability that it would backfire and result in a worse candidate winning. This Nash equilibrium is in some sense the "best" result, in that all voters have equal power and no voter can strategically alter it. However, it is both complicated-to-compute and unnecessarily probabilistic. Forest Simmons <a href="http://lists.electorama.com/pipermail/election-methods-electorama.com/2003-October/011028.html">has proposed an interesting method</a> for artificially reducing the win probability of the less-likely candidates, but this method increases computational complexity without being able to reach a single, fully stable result. (Simmons proposed simply selecting the most-probable candidate, which is probably the best answer, but it does invalidate the whole strategic motivation).<div>
<br></div><div>There's an easier way. Simply assume that any given voter has only near-perfect information, not perfect information. That is, each voter knows exactly which candidates are in the Smith set, but makes an ideosyncratic (random) evaluation of the probability of each of those candidates winning. That voter's ideal strategic ballot is an approval style ballot in which all candidates above their expected value are rated at the top and all candidates below at the bottom. However, averaging over the different ballots they'd give for different subjective win probabilities, you get something very much like a range ballot renormalized so that there is at least one Smith set candidate at top and bottom. (It's not exactly that, the math is more complex, especially when the Smith set is bigger than 3; but it's a good enough approximation and much simpler than the exact answer).</div>
<div><br></div><div>Let's look at a few scenarios to see how this plays out.</div><div><br></div><div>First, the typical minimal Condorcet scenario. You have Va voters who say A>B>C, and think on average that B is b% as good as A compared to C (that is, if they rank them 70, 60, 20, then b=(60-20)/(70-20)=80%); Vb voters who say B>C>A with C on average c% as good as B; and Vc voters who vote C>A>B with A at a%. Without loss of generality, Va > Vb or Vc, but Va < Vb + Vc (or A would be a Condorcet winner). The renormalized Range tiebreaking scores are A=Va + a*Vc; B=Vb + b*Va; and C=Vc + c*Vb. What does that mean?</div>
<div>* If all of a, b, and c are 50%, then the candidate with the most exceptionally strong win or weak loss, wins (that is, if the two strongest wins are farther apart than the two weakest losses, then the strongest win, otherwise the weakest loss). </div>
<div><div>* If one of a, b, and c is near 100% where the others are near 0%, then that candidate wins. You could say that the XYZ voters' opinion of Y is acting as the tiebreaker for Y.</div><div>* In general, for honest ballots, the winner is the candidate with the least renormalized Bayesian regret. Assuming the effects of renormalization are random, this will tend to be the candidate with the least Bayesian regret overall.</div>
<div><br></div><div>Note that this could elect a Condorcet loser. For instance, if you had ballots A>B>D>>>C, B>C>D>>>A, and C>A>D>>>B, (that is, each ballot rates candidates at 100, 99, 98, and 0) then D is the Condorcet loser but has higher utility than any other candidate, and wins. But this could only happen if there is a Condorcet tie for winner. In general, I find the scenario pretty implausible, and the result still optimal for that scenario. (Because I think such results are optimal, I advocate using the Smith set and not the Schwarz set for renormalizing). </div>
<div><br></div><div>How does this method do on other criteria? It fulfills Condorcet (by definition) and is monotonic. For strategies which don't change the content of the Smith set, it does very well on other criteria, fulfilling Participation, Consistency, and "Local IIA". However, as the content of the Smith set changes, it can fail all of those latter criteria - but only by moving *towards* the renormalized utility winner, who is arguably the correct winner anyway. I believe that, because of its construction, it will have relatively low Bayesian Regret among Condorcet systems.</div>
<div><br></div><div>How resistant is it to strategy? When the Smith set is unchanged, all useful strategies are at worst asymptotically on the honest side of semi-honest - that is, they only require ranking equal (or, for nearly all of the strategic benefit, nearly equal) candidates who are not honestly equal. Moreover, I think that the DSV construction of this system gives it excellent resistance to real-world strategies. Unless you have more information than the agent which strategizes your ballot, you simply vote honestly and allow the system to strategize for you. Thus, you wouldn't be motivated to use strategy unless you felt you knew not only the exact possibilities and chirality of the Smith set, both before and after your strategizing, but also the probable winner from that Smith set. Under realistic polling information, I think that such scenarios will be rare; if you know of a possible Condorcet tie, then you will not generally know much about the likely winners of this tie. </div>
<div><br></div><div>(It may even be provable that if you assume voters exist in some kind of continuous, unimodal distribution in ideology space, and motivate Condorcet ties by having non-euclidean but continuous distance measures, then there will always naturally exist enough "honest defensive votes" to make any strategy backfire).</div>
<div><br></div><div>Note that in regard to resisting simple strategies, this method is a serious improvement over either Range or Approval. Because it is a kind of DSV, it "does the strategy for you". So a candidate will gain no significant advantage if their voters are more strategic (that is, more dichotomous and better at evaluating the expected winners of the election) than other candidates' voters. It allows for naive votes of many kinds, including potentially "don't know" votes for certain candidates, simple approval-style votes, simple ranking-style votes, and others, giving all approximately the same power. And because it uses Range ballots as an input but encourages more honest voting than Range, it enables the society to see (as an academic question) who is the true Range winner, when that differs from the Condorcet winner. I believe that, in successive elections, enough voters would reevaluate such candidates to make one of them win in both senses.</div>
<div><br></div><div>Nonetheless, I will present one scenario where strategy might be employed. Say the candidates are Nader, Gore, and Bush, and assume (contrafactually) that this is simple a matter of 1-dimensional ideology and that all voters agree that the candidates are, left to right, nader..gore..........................bush (that is, Nader and Gore in this scenario are considered much closer than Gore and Bush). Assume also that there is some dearth of center-left voters who prefer Gore to Bush only weakly. So the honest preferences are something like</div>
<div><br></div><div>               Nader  Gore  Bush</div><div>11%         100      99      0</div><div>40%         99        100    0</div><div>49%         0          1       100</div><div><br></div><div>If all of the 11% of Nader voters dishonestly "bury" Gore under Bush, then Nader wins with 50.6% (that is, 11% + (99%*40%)). However, if even 2 of the 40% Gore voters honestly vote Gore, Bush, Nader - or EVEN if those 2% simply give Nader 1 point instead of 99 points - then the strategy backfires and elects Bush. Given the honest utilities assumed, the Nader voters would not use this strategy if they thought this was even 1% likely. In the real election, of course, there was in fact a non-negligible minority of honest Gore>Bush>Nader voters. <span class="Apple-style-span" style="font-size: x-small;">(Gore voters were probably likelier to support Bush second than Nader voters, and I've seen polls that say 1/4 of Nader voters supported Bush second (!); 1/4 of Gore voters would be around 12%).</span> So this strategy would never have worked in real life, and in fact it requires an artificial gap in the voter distribution right near the Gore>Bush>Nader zone (extending on both sides of that zone, because for instance Gore>>Nader>Bush votes hose the strategy too).</div>
</div></div>