I had actually heard of MMPO before - I do think it does fail later-no-help, though. Am I right?<br>It would be better to find a method that passes both for this purpose...<br>However, I wonder how well MMPO with a minimum first-place vote threshold would work...
<br><br><div><span class="gmail_quote">On 4/25/07, <b class="gmail_sendername">Kevin Venzke</b> <<a href="mailto:stepjak@yahoo.fr">stepjak@yahoo.fr</a>> wrote:</span><blockquote class="gmail_quote" style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;">
Tim,<br><br>--- Tim Hull <<a href="mailto:timhull2@gmail.com">timhull2@gmail.com</a>> a écrit:<br>> On this topic, does anyone know of a modified,<br>> kind-of-Condorcet-but-not-quite method which preserves later-no-harm?
<br>> This may be interesting as a starting point...<br><br>MinMax (pairwise opposition) satisfies LNHarm and usually gives results<br>that are similar to those of Condorcet methods. It can behave strangely<br>though, in electing a candidate with oddly few votes.
<br><br>The method elects the candidate who minimizes the largest number of<br>votes against him in any pairwise contest. That is, it doesn't regard<br>who actually wins each pairwise contest.<br><br>Kevin Venzke<br><br>
<br><br>___________________________________________________________________________<br>Découvrez une nouvelle façon d'obtenir des réponses à toutes vos questions !<br>Profitez des connaissances, des opinions et des expériences des internautes sur Yahoo! Questions/Réponses
<br><a href="http://fr.answers.yahoo.com">http://fr.answers.yahoo.com</a><br>----<br>election-methods mailing list - see <a href="http://electorama.com/em">http://electorama.com/em</a> for list info<br></blockquote></div>
<br>