<HTML><BODY style="word-wrap: break-word; -khtml-nbsp-mode: space; -khtml-line-break: after-white-space; ">Dear Mike,<DIV><BR class="khtml-block-placeholder"></DIV><DIV>It turns out that Huntington showed that corresponding to the divisor methods one can think of these methods as "rank index" methods, or what I like to call table methods. One constructs a table from the original population where the table involved depends on the method. (This is the way the Census Bureau describes Huntington-Hill on its web page.) For Webster the table is constructed by dividing the populations by a + 1/2 where a = number of states, starting with a = 0 for the first row, a= 1 for the second, etc. . So one obtains rows for the table by dividing by 1/2, 3/2, 5/2, etc. (In this way of thinking one can easily give each state one seat, or whatever, at the start.) However, since all that matters for assigning h seats is to assign the seats to the entries in the table ordered by size (after we give each state one seat if required) we can divide instead by 1, 3, 5, etc. rather than the numbers above. This is the way that Webster (St. Lague) is described in Europe. Viewed in this framework the presence or lack of the factor 1/e makes no difference. One would get the same apportionment either way. This means there are are "equivalence classes" of formulas which for the rank index point of view one can use and which will give the same apportionment.</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>That is what I was trying to get at.</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Huntington called his method the Method of Equal Proportions which is a "clever" name but what it really does is optimize some measure of fairness for transfer between pairs of states as well as some "axiom," while Webster optimizes a different measure as well as some axioms. When it comes to bias, there are many different kinds of bias that one might talk about and differing ways to measure that bias. Calling something "bias free" does not shed extra light without more insights. </DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Regards,</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Joe</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR><DIV><DIV>On Jan 23, 2007, at 8:37 AM, Michael Ossipoff wrote:</DIV><BR class="Apple-interchange-newline"><BLOCKQUOTE type="cite"><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Joe--</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">You asked what is the role of 1/e in the formula for Bias-Free's round-off<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">point.<SPAN class="Apple-converted-space"> </SPAN>I tried to answer by saying that ((b^b)/(a^a))(1/e) is just the<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">result I got when looking for the round-off point that would make cycles'<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">s/q = 1. That's all I can say about where the formula came from.</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">What was the meanng of your question? In what sense was "role" intended?</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Unless I made an error (and I probably didn't make an error), the formula<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">for Weighted Bias-Free doesn't contain "e". Weighted Bias-Free is gotten by<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">a/q-1 and b/q-1 by a weight that approximates the frequency density of<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">states at a particular q value. I approximate that density function by:</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">B/(q+A), which has the same general behavior as the distribution function,<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">though of course it will be a rough approximation.</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Mike Ossipoff</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">----</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">election-methods mailing list - see <A href="http://electorama.com/em">http://electorama.com/em</A> for list info</DIV> </BLOCKQUOTE></DIV><BR><DIV> <SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><DIV><BR class="khtml-block-placeholder"></DIV><DIV>------------------------------------------------</DIV><DIV>Joseph Malkevitch</DIV><DIV>Department of Mathematics</DIV><DIV>York College (CUNY)</DIV><DIV>Jamaica, New York 11451</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Phone: 718-262-2551 (Voicemail available)</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>My new email is:</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><A href="mailto:malkevitch@york.cuny.edu">malkevitch@york.cuny.edu</A></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>web page:</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><A href="http://www.york.cuny.edu/~malk">http://www.york.cuny.edu/~malk</A></DIV><DIV><BR class="khtml-block-placeholder"></DIV><BR class="Apple-interchange-newline"></SPAN></SPAN></SPAN></SPAN></SPAN> </DIV><BR></DIV></BODY></HTML>