<HTML><BODY style="word-wrap: break-word; -khtml-nbsp-mode: space; -khtml-line-break: after-white-space; ">Dear Election List,<DIV><BR class="khtml-block-placeholder"></DIV><DIV>See some in-line comments.</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Regards,</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Joe</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR><DIV><DIV>On Dec 7, 2006, at 5:40 PM, MIKE OSSIPOFF wrote:</DIV><BR class="Apple-interchange-newline"><BLOCKQUOTE type="cite"><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">I hadn't heard about the other methods being justified in terms of transfers<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">between states after the allocation. <BR></DIV></BLOCKQUOTE><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>You can find the description in Balinski and Young's book Fair Representation, page 102, of the revised edition which was relatively recently released by Brookings Institution Press. </DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><BR><BLOCKQUOTE type="cite"><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">But, as for different standards for<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">judging the result of those transfers, by different standards of<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">proportional fairness, there doesn't seem to be much room for rival<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">standards.</DIV></BLOCKQUOTE><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Unfortunately, although it is not intuitive, seeming small changes in the measure of "optimality" makes a big difference in which method turns out to be optimal.</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Webster optimizes when the comparison of seats divided by population for pairs of states in "absolute" terms is made, while Dean's method optimizes when the comparison of population divided by seats for pairs of states in "absolute" terms is made. However, Huntington showed that all of the different measures of fairness/proportionality/optimization for the 5 "standard" methods when measured in terms of relative differences leads to what today is usually called Huntington-Hill.</DIV><DIV><BR class="khtml-block-placeholder"></DIV><BR><BLOCKQUOTE type="cite"><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">The Constitution says that the seats should be allocated to the states in<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">proportion to their populations. "Proportion" means that seats should be<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">proportional to population. The (impossible) goal, therefore, is for all the<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">states to have the same proportion, the same ratio, of votes to seats.</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">So, what relation between two states should be optimized with respect to<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">seat transfers between them? Is there any room for disagreement? <BR></DIV></BLOCKQUOTE><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Since the different methods have had supporters over the years there does seem to be disagreement. </DIV><DIV><BR class="khtml-block-placeholder"></DIV><BR><BLOCKQUOTE type="cite"><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Starting<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">with the apportionment allocation, and then giving a seat from one state to<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">another, should never cause their v/s to differ by a smaller factor than it<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">did before the transfer. The words "proportional" and "proportion" imply<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">that factor is what we're talking about.</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Yes, Hill's procedure looks at factor where Webster's procedure looks at<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">arithmetic rounding. But, as I said, no genuine justification can be found<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">in the procedure definitions of Webster or Hill. If you can't make the v/s<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">proportion the _same_ for all states, then who's to say which kind of<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">fudging is best? As I said, as soon as we round off to the nearest integer,<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">like Webster or Hill, we're going from solid justification to fudging and<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">word-games.</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV></BLOCKQUOTE><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Perhaps it is word games, but it is also involves different views about what should be the optimization criteria used, and what fairness criteria are paramount. </DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><BR><BLOCKQUOTE type="cite"><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">So the transfer property is what can give solid justification. A transfer<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">property doesn't<SPAN class="Apple-converted-space"> </SPAN>work for Hill, because a fixed integral number of seats<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">(one) is transferred. That's why Webster's arithmetic rounding, placing the<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">state as close to its ideal number in terms of raw seat-count, is what makes<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">it possible for Webster to have the transfer property. It means that any<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">change in that party's seat total, such as receiving or giving a seat, can<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">only put that party's seat total farther from the fractional seat total<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">corresponding to its ideal v/s. And when a state is as close as it can be to<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">that ideal fractional seat total, in terms of raw seat-count, then it must<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">also as close as possible to its ideal v/s, as measured by the factor by<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">which its v/s differs from the ideal. And that's true because Webster rounds<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">arithmetically instead of geometrically.</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">As for Jefferson or the others, I've never heard of a transfer property<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">claimed for them. <BR></DIV></BLOCKQUOTE><DIV><BR class="khtml-block-placeholder"></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>The work showing that this is so dates to the 1920's. It was done by E. V. Huntington, who spent a large part of his career at Harvard University. It turns out there are very different ways of thinking of the 5 different "standard" apportionment methods (other than largest remainders) and that these lead to different computational algorithms that yield the same results. The three different points of view involve "rounding rules," divisors, and rank functions. Thus, on the web page (Census Bureau) that describes the current apportionment method (Huntington-Hill) used by the US the method is described in terms of producing a table of numbers and assigning the seats after the first 50 of the 435 seats are assigned, one to each state, as required by the Constitution, in order of the size of the numbers in this table.</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><FONT class="Apple-style-span" size="3"><SPAN class="Apple-style-span" style="font-size: 12px;"><A href="http://www.census.gov/population/www/censusdata/apportionment.html">http://www.census.gov/population/www/censusdata/apportionment.html</A></SPAN></FONT></DIV><DIV><BR class="khtml-block-placeholder"></DIV><BR><BLOCKQUOTE type="cite"><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Jefferson, for instance differs from Webster in rounding<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">down instead of rounding to the nearest whole seat.</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Since there's no solid justification in the procedures, we can justify<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">according to how transfer affects the factor by which the 2 states' v/s<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">proportions differ. If the transfer of a seat between two states makes their<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">v/s differ by a smaller factor than it did before, then something is wrong<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">with the initial allocation.</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Mike Ossipoff</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">_________________________________________________________________</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Stay up-to-date with your friends through the Windows Live Spaces friends<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">list.<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><A href="http://clk.atdmt.com/MSN/go/msnnkwsp0070000001msn/direct/01/?href=http://spaces.live.com/spacesapi.aspx?wx_action=create&wx_url=/friends.aspx&mk">http://clk.atdmt.com/MSN/go/msnnkwsp0070000001msn/direct/01/?href=http://spaces.live.com/spacesapi.aspx?wx_action=create&wx_url=/friends.aspx&mk</A></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">_________________________________________________________________</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">Stay up-to-date with your friends through the Windows Live Spaces friends<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">list.<SPAN class="Apple-converted-space"> </SPAN></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><A href="http://clk.atdmt.com/MSN/go/msnnkwsp0070000001msn/direct/01/?href=http://spaces.live.com/spacesapi.aspx?wx_action=create&wx_url=/friends.aspx&mk">http://clk.atdmt.com/MSN/go/msnnkwsp0070000001msn/direct/01/?href=http://spaces.live.com/spacesapi.aspx?wx_action=create&wx_url=/friends.aspx&mk</A></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; min-height: 14px; "><BR></DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">----</DIV><DIV style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; ">election-methods mailing list - see <A href="http://electorama.com/em">http://electorama.com/em</A> for list info</DIV> </BLOCKQUOTE></DIV><BR><DIV> <SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><SPAN class="Apple-style-span" style="border-collapse: separate; border-spacing: 0px 0px; color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; text-align: auto; -khtml-text-decorations-in-effect: none; text-indent: 0px; -apple-text-size-adjust: auto; text-transform: none; orphans: 2; white-space: normal; widows: 2; word-spacing: 0px; "><DIV><BR class="khtml-block-placeholder"></DIV><DIV>------------------------------------------------</DIV><DIV>Joseph Malkevitch</DIV><DIV>Department of Mathematics</DIV><DIV>York College (CUNY)</DIV><DIV>Jamaica, New York 11451</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>Phone: 718-262-2551 (Voicemail available)</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>My new email is:</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><A href="mailto:malkevitch@york.cuny.edu">malkevitch@york.cuny.edu</A></DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV>web page:</DIV><DIV><BR class="khtml-block-placeholder"></DIV><DIV><A href="http://www.york.cuny.edu/~malk">http://www.york.cuny.edu/~malk</A></DIV><DIV><BR class="khtml-block-placeholder"></DIV><BR class="Apple-interchange-newline"></SPAN></SPAN></SPAN></SPAN></SPAN> </DIV><BR></DIV></BODY></HTML>