<br><br><b><i>"Simmons, Forest" <simmonfo@up.edu></i></b> wrote:<blockquote class="replbq" style="border-left: 2px solid rgb(16, 16, 255); margin-left: 5px; padding-left: 5px;"> Paul K. is going to think that I have too much time on my hands, since this posting is strictly for theoretical purposes, namely to try to imagine how close we might get to the "Small Voting Machine," the SMV that was posited by Alex Small two or three years ago.<br> <br>Here's a stab at the idea.  Imagine that you had unlimited computing power with an infinitely fast computer to process the rankings submitted by the voters.<br> <br>This method is a ballot by ballot Declared Strategy Voting method like Rob LeGrand's in which ballots are drawn in random order from the stack of ballots, and by some rule an approval cutoff is applied to each ballot in succession.  The winner is the candidate with the greatest approval total.<br> <br>In rob's method, approval strategy A is applied.  The approval
 cutoff is placed next to the name of the candidate with the current highest approval on the side of the name of the candidate with the next highest approval.<br> <br>In the method I propose every possible cutoff is tried, and the one that gives the best result is used.<br> <br>Here's what I mean by trying a cutoff:  tentatively place the cutoff at some level of the ranked ballot, and then run the rest of the ballot by ballot DSV one hundred times to find the distribution of winners that results from using that cutoff.<br> <br>After you have done that with all of the possible cutoffs on the ranked ballot, go with the cutoff that produced the most favorable distribution of winning candidates.  (most favorable relative to the ranked ballot in question, of course)<br> <br>Then go on to the next ballot, and repeat the whole procedure.<br> <br> <br>Of course this method lacks practicality.  But perhaps there is some way to approximate it in the same way that automatic chess
 machines approximate the corresponding chess strategy.<br> <br>What do you think?<br> <br>Forest<br>----<br>election-methods mailing list - see http://electorama.com/em for list info<br></blockquote> <br><br> (I am actually Antonio Oneala.  Whenever I created this E-Mail address about six years ago, however, I was going through a rather Libertarian phase in my life, and decided it was stupid of them to ask my name so I lied about it.  Whenever I started using E-Mail, it became apparent to me that every E-Mail I sent would now be sent as "Antonio Oneala", something I haven't bothered to change for the past six years.  So, there's the story there...)<br><br>I happen to believe that adjusting a ballot to give each voter an ideally strategic ballot will be the future of advanced voting system design, at least where fairness is involved.  It does take a lot of processing power, and I believe it will usually take away the summability of the
 method.<br><br>An ideal ranked voting method would be one that defined people into "teams" (like Douglas Woodall's DAC and DSC), and made each person give out a 1 or 0 rating to each candidate.  Each person uses their rankings to give out a 1 to all candidates who are lower than them, but revoke that rating if it hurts a person higher than any candidate you are now ranking as one.  Use the "teams" to decide this.  Of course, you could add a lot of different definitions to this to make it try to satisfy various voting methods, as the teams hold just about all of the relevant information of the election.  I'm not sure about this though, I've been thinking it through in my head but haven't yet put it much into paper.  <br><br>I actually developed the idea when thinking about how to make an optimally strategic Condercet method.  I introduced the idea of teams into the Condercet method to decide which voters would grant approval in each pairwise
 election to whom, and then I decided that the teams themselves would probably be better than the pairwise elections to decide the winner.  Why limit ourselves by Condercet information?  <br><br>I think the method may be able to be applied into a proportional method, as any proportional team will get more people to assign themselves to it than a non-proportional method.  I believe that this would probably be the same, however, as replacing the D'Hondt quota in proportional representation with giving each group a "1", not adding anything on for more wins, which would result in any group which gets any votes getting representation, and even a majority group will probably only get 1 seat.<br><p>
                <hr size=1>New Yahoo! Messenger with Voice. <a href="http://us.rd.yahoo.com/mail_us/taglines/postman5/*http://us.rd.yahoo.com/evt=39666/*http://messenger.yahoo.com">Call regular phones from your PC</a> and save big.