<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
  <meta http-equiv="Content-Type" content="text/html;charset=ISO-8859-1">
  <title></title>
</head>
<body>
<meta http-equiv="Content-Type" content="text/html;charset=ISO-8859-1">
<title></title>
          
<pre>James Green-Armytage wrote:
><i> 
</i>><i> majority criterion: If a majority of the voters prefers all of the members
</i>><i> of a given set of candidates over all candidates outside that set, and
</i>><i> they vote sincerely, then the winning candidate should come from that set.</i></pre>
D.R. Woodall's  wording (in reference to  "preferential election rules" ,
on this list known as  "ranked-ballot <br>
election methods"):<br>
<br>
"Majority:  If  more than half the voters put the same set of candidates
(not necessarily in the same order)  at the top<br>
of their preference listings, then at least one of  those candidates should
be elected."<br>
<br>
I  regard  this as equivalent to the "Mutual Majority" Criterion, as here
defined by Blake Cretney:<br>
"If there is a majority of voters for which it is true that they all rank
 a set of candidates above all others, then one of these candidates must
win."  <br>
<br>
As distinct from this,  Blake Cretney  also defines a   "Majority" Criterion
that Bart Ingles is more familiar with:<br>
"If an alternative is ranked first on a majority of ballots, that alternative
 must win."<br>
<br>
That  version I like to call  "Majority Favourite".  I  am happy with  Woodall's
 terms,  but  to be clear  I write  "(mutual) Majority"<br>
or  "Majority Favourite" (depending  on which I mean).<br>
<br>
When making technical comparisons between  methods that allow voters to fully
rank the candidates and those that don't,  I  am<br>
strongly of  the view that the best/only way to get away from confusion and
sophistry  is  to  consider that all the methods have as <br>
their input ranked ballots with an  approval cutoff.  So we sometimes assume
that the voters' rankings exist, even if  the method<br>
doesn't  allow them to be actually recorded on the ballot papers;  and  also
we can sometimes assume that the voters  have <br>
approval cutoffs, even if  they are not indicated  on  the ballot papers.<br>
In this light, Approval  is  a method  that ignores everything except  the
approval-cutoffs, and  so fails even Majority Favourite.<br>
.<br>
Bart Ingles (Mon.Mar.15) wrote:<br>
<pre>"Eric Gore wrote:
><i> 
</i>><i> Now, if you can present an example where the Condorcet winner, with a 
</i>><i> reasonable interpretation of the ballots, did not win, you may have a 
</i>><i> good discussion on your hands.
</i>
Nurmi gives this example (credited to Fishburn):

1  a>b>c>d>e
1  b>c>e>d>a
1  e>a>b>c>d
1  a>b>d>e>c
1  b>d>c>a>e

Condorcet winner:  a

    1st/2nd/3rd/4th/5th ranks
   ---------------------------
a   2/1/0/1/1
b   2/2/1/0/0

This is a case where the Borda (and possibly Approval) winner really
does sound more plausible than the CW based on ranks alone."

Quota Limited Weighted Approval (QLWA) in this example agrees with Condorcet.

Candidate weights- a:2   b:2  c:0  d:0  e:1 
5 ballots, so Quota = 2.5.
Approvals-  1:1a>.25b,   1:1b>1c>.5e,  1:1e>.75a,  1:1a>.25b,  1:1b>1d>1c>.25a

Final scores-  a:3  b:2.5  c:2  d:1  e:1.5

I give this illustration just because I like QLWA, not to dispute that plain Approval could
plausibly (or would likely) elect b.

Chris Benham 









 

</pre>
<br>
<br>
<br>
  <br>
 
</body>
</html>