<HTML><FONT FACE=arial,helvetica><HTML><FONT SIZE=2 PTSIZE=10 FAMILY="SANSSERIF" FACE="Arial" LANG="0">Eric Gorr wrote:<BR>
<BR>
>Condorcet did not elect the wrong candidate. The voters were clearly <BR>
>split, but both of the larger groups preferred the third option over <BR>
>the primary opposition. As such, the highest utility candidate was <BR>
>elected by Condorcet.<BR>
<BR>
>Why do you believe that the first place preferences matter more then <BR>
>the middle or final preferences? What is the basis for this <BR>
>assumption?<BR>
<BR>
There are 3 candidates in an election A,B and C. The votes and relative utilities are:<BR>
<BR>
45 A1.0>B0.3>C0.1<BR>
8 B1.0>A0.6>C0.2<BR>
5 B1.0>C0.6>A0.2<BR>
42 C1.0>B0.4>A0.1<BR>
<BR>
The Condorcet winner is B. Adding up the utilities of the candidates the winner we get<BR>
<BR>
A: 45x1 + 8x0.6 + 5x0.2 + 42x0.1 = 55<BR>
B: 13x1 + 45x0.3 + 42x0.4 = 43.3<BR>
C: 42x1 + 45x0.1 + 8x0.2 + 5x0.6 = 51.1<BR>
<BR>
A has the highest total utility, A is not the Condorcet winner.<BR>
<BR>
David Gamble<BR>
<BR>
</FONT></HTML>