<?xml version="1.0" ?>
<html>
<head>
<title></title>
</head>
<body>
<div align="left"><font face="Arial"><span style="font-size:10pt">Counting unranked candidate pairs
as zero votes each, Bart's example results are:</span></font></div>
<div align="left"><font face="Arial"><span style="font-size:10pt"><i>
wv ABC mar ABC</i></span></font></div>
<div align="left"><font face="Arial"><span style="font-size:10pt"><i>C</i> <u>T
NT</u> <u>T NT</u></span></font></div>
<div align="left"><font face="Arial"><span style="font-size:10pt"><i>B</i> T A/C B
A/C A</span></font></div>
<div align="left"><font face="Arial"><span style="font-size:10pt"><i>A</i> NT B
B C B</span></font></div>
<div align="left"><br/>
</div>
<div align="left"><font face="Arial"><span style="font-size:10pt">Where A/C is a tie. Both ABC
and CBA either gain nothing or lose by truncating </span></font></div>
<div align="left"><font face="Arial"><span style="font-size:10pt">(for both wv and margins) given that
A/C and B have equal utility. Adam's claim </span></font></div>
<div align="left"><font face="Arial"><span style="font-size:10pt">survives Bart's challange. </span></font></div>
<div align="left"><br/>
</div>
<div align="left"><font face="Arial"><span style="font-size:10pt">If you give the unranked pairs 1/2
vote each then the wv result becomes identical to
the margin result as shown above. My conjecture is: <b>If you give multiple
unranked candidates 1/2 vote each then both wv and margins have the no
strategic truncation incentive (NSTI) property</b>. If, as I maintain, there is no
overall disadvantage to giving 1/2 vote each to multiple unranked candidates, and if
my conjecture is correct, then there is no basis for claiming that this NSTI property
favors wv over margins.</span></font></div>
</body>
</html>