[EM] Theorem equating Nanson AV-Borda with Condorcet: 3 candidates case shown
Craig Carey
research at ijs.co.nz
Sun Sep 10 10:58:58 PDT 2000
>From: Joe Malkevitch 'Email: joeyc at cunyvm.cuny.edu'
>Date: Mon Sep 11, 2000 2:58am
>Subject: [EM] Re: Sets of vertices leads nowhere; Mike Ossipoff
>
>
>The election method which is an elimination method based on
> the Borda count is usually known as Nanson's method. It has
> the very nice property that if there is a condorcet winner
> that the method chooses that candidate.
>
>Cheers, Joe
>Joe Malkevitch Department of Mathematics,
>York College (CUNY) Jamaica, NY 11451
>Web Page: http://www.york.cuny.edu/~malk
I aim to show the statement false, but the attempt fails, by the
bottom of the message.
This Alternative Vote method with Borda to calculate the 1st
preference sums.
a AB. (Sa,Sb,Sc) = (2, 1, 0 ).a = (4, 2, 0).a / 2
b B.. (Sb,Sa,Sc) = (2, 1/2, 1/2).b = (4, 1, 1).b / 2
c C.. (Sc,Sa,Sb) = (2, 1/2, 1/2).c = (4, 1, 1).c / 2
Sum: (Sa,Sb,Sc) = (4a+b+c, 2a+4b+c, b+4c)
(Sa<Sb) = (4a+b+c < 2a+4b+c) = (2a < 3b)
(Sa<Sc) = (4a+b+c < b+4c) = (4a < 3c)
(Sb<Sc) = (2a+4b+c < b+4c) = (2a+3b < 3c)
/-------------------------------------------------------------------
Check that the lines made by changing '<' into '=' meet:
Elim a: 3c=2a+3b <--> 3c=6b, and 2=2a+2b+2c = 5b+2c
Elim c: 6c=12b, 6=15b+6c, --> 6=15b+12b=27b <--> 2=9b, b=2/9
--> c = (6/3)(2/9)=4/9,
a = 3/9
--> 9a = 3, 9b = 2, 9c = 4.
(Sa,Sb,Sc) = (4a+b+c, 2a+4b+c, b+4c) / 9
9.(Sa,Sb,Sc) = (12+2+4, 6+8 +4, 2+16) = (18, 18, 18)
\-------------------------------------------------------------------
Case stage 1 & (A loses), (2a<3b)(4a<3c)
a+b B. (c<a+b)
c C. (a+b<c)
Case stage 1 & (B loses), (3b<2a)(2a+3b<3c)
a A. (c<a)
c C. (a<c)
Case stage 1 & (C loses), (3c<4a)(3c<2a+3b)
a AB (b<a)
b B. (a<b)
+-------------------------------------------------------------------
(A wins) = (3b<2a)(2a+3b<3c)(c<a) or (3c<4a)(3c<2a+3b)(b<a) = aW1
(B wins) = (2a<3b)(4a<3c)(c<a+b) or (3c<4a)(3c<2a+3b)(a<b) = bW1
(C wins) = (2a<3b)(4a<3c)(a+b<c) or (3b<2a)(2a+3b<3c)(a<c) = cW1
aW1: (c<a) => (3c<4a)
bW1: (a<b) => (2a<3b)
cW1: (4a<3c) => (a<c)
aW1 = (3c<4a).((3b<2a)(2a+3b<3c)(c<a) or (3c<2a+3b)(b<a))
bW1 = (2a<3b).((4a<3c)(c<a+b) or (3c<4a)(3c<2a+3b)(a<b))
cW1 = (a<c).((2a<3b)(4a<3c)(a+b<c) or (3b<2a)(2a+3b<3c))
aW1: (2a+3b<3c)(c<a) => (2a+3b<3a) = (3b<a) => (3b<2a)
bW1: (3c<4a)(a<b) => (3c<2a+2b) => (3c<2a+3b)
cW1: (2a<3b)(a+b<c) => (5a<3c) => (4a<3c)
aW1 = (3c<4a).((2a+3b<3c)(c<a) or (3c<2a+3b)(b<a))
bW1 = (2a<3b).((4a<3c)(c<a+b) or (3c<4a)(a<b))
cW1 = (a<c).((2a<3b)(a+b<c) or (3b<2a)(2a+3b<3c))
I shan't complete the equations.
The Condorcet method:
Case of Condorcet:
a AB.
b B..
c C..
Internal pairwise comparisons:
Case A:B = a:b
a A
b B
c C..
Case A:C = a:c
a A
b B..
c C
Case B:C = (a+b):c
a AB
b B
c C
aW2 = (A wins) = (b<a)(c<a) Condorcet 1-winner winners
bW2 = (B wins) = (a<b)(c<a+b)
cW2 = (C wins) = (a+b<c)
goto X1
(No winners) = (a<c).-aW2.-bW2.-cW2 or (c<a).-aW2.-bW2.-cW2
= (a<c).T.-bW2.-[(a+b<c)] or (c<a).-[(b<a)].-bW2.T
= (a<c).T.-bW2.-[(a+b<c)] or (c<a).-[(b<a)].-bW2.T
= [(b<a) or (a+b<c)] . [(a<c)(c<a+b) or (c<a)(a<b)]
= (b<a)(a<c)(c<a+b) or (a+b<c)(c<a)(a<b)
= (b<a)(a<c)(c<a+b)
= E say
The presence of the (b<a) is a region where Condorcet may be getting
the wrong answer.
<<X1>>
The statement is false if
(not E) =>
(aW1.-aW2 or -aW1.aW2 or bW1.-bW2 or -bW1.bW2 or cW1.-cW2 or -cW1.cW2)
-----------------------------------------------------------------------
Case #1: (a+b<c): Condorcet has C win:
In the J. M. (Nanson) method:
cW1 = (a<c) . ((2a<3b)(a+b<c) or (3b<2a)(2a+3b<3c))
cW1 = (a<c) . ((2a<3b) or (3b<2a)(2a+3b<3c))
cW1 = (a+b<c).((2a<3b) or (2a+3b<3c))
cW1 = (a+b<c) = T.
The two methods agree on Condorcet's C win region.
Case #2: (b<a)(c<a): Condorcet has A win:
aW1 = (b<a)(c<a) . (3c<4a).((2a+3b<3c)(c<a) or (3c<2a+3b)(b<a))
aW1 = (b<a)(c<a) . ((2a+3b<3c) or (3c<2a+3b))
aW1 = (b<a)(c<a)
The two methods agree on Condorcet's A win region.
Case #3: (a<b)(c<a+b): Condorcet has B win:
bW1 = (a<b)(c<a+b) . (2a<3b).((4a<3c)(c<a+b) or (3c<4a)(a<b))
bW1 = (a<b)(c<a+b) . ((4a<3c) or (3c<4a))
bW1 = (a<b)(c<a+b)
The two methods agree on Condorcet's B win region.
-----------------------------------------------------------------------
There the cases of 0 and 2 and 3 winners. Condorcet finds no
winners so presumably the conjecture is not failed there too.
I have lost access to my REDLOG code. Maybe the original poster could
therefore inform [whomever] on the constraints that allow the statement
happens to be true [e.g. an upper limit on the number of candidates].
So a multiwinner Condorcet can be defined now, using STV instead of the
Approval Vote.
G. A. Craig Carey, Auckland
http://www.egroups.com/messages/politicians-and-polytopes
More information about the Election-Methods
mailing list