Reverse Bucklin- one loser at a time

DEMOREP1 at aol.com DEMOREP1 at aol.com
Tue Jun 23 14:04:36 PDT 1998


Using the example from Reverse Bucklin vs. Instant Runoff raises another
question- should only one candidate at a time lose using Reverse Bucklin lose
(i.e. the candidate with the highest majority against him/her) ?

A larger tie example

15  A>B>C>D>E>F
16  B>C>D>E>F>A
17  C>D>E>F>A>B
18  D>E>F>A>B>C
19  E>F>A>B>C>D
20  F>A>B>C>D>E
105

Assume each is acceptable to a majority of the voters using a YES/NO vote.

89 A/B  16
88 B/C  17
87 C/D  18
86 D/E  19
85 E/F   20
90 F/A  15

72 A/C  33
70 B/D  35
68 C/E  37
66 D/F  39
70 E/A  35
74 F/B  31

54 A/D 51
51 B/E  54
48 C/F  57

A>B>C>D>E>F>A

If the 3 last choices are added using Reverse Bucklin, then --
A 51
B 54  
C 57  loses with highest majority against
D 54  
E 51
F 48
 315

15  A>B>D>E>F
16  B>D>E>F>A
17  D>E>F>A>B
18  D>E>F>A>B
19  E>F>A>B>D
20  F>A>B>D>E
105

89 A/B  16
86 D/E  19
85 E/F   20
90 F/A  15

70 B/D  35
66 D/F  39
70 E/A  35
74 F/B  31

54 A/D 51
51 B/E  54

A>B>D>E>F>A, tie continues

Last 2 choices
A  51
B  54  loses
D  39
E  35
F  31
  210

15  A>D>E>F
16  D>E>F>A
17  D>E>F>A
18  D>E>F>A
19  E>F>A>D
20  F>A>D>E
105

86 D/E  19
85 E/F   20
90 F/A  15

66 D/F  39
70 E/A  35

54 A/D 51

A>D>E>F>A, tie continues

Last 2 choices
A 70 loses with highest majority against
D 39
E 35
F  66
  210

86 D/E  19
85 E/F   20

66 D/F  39

D>E>F, D wins
Note that D had 54 votes against in the last 3 choices.



More information about the Election-Methods mailing list