Reverse Bucklin- one loser at a time
DEMOREP1 at aol.com
DEMOREP1 at aol.com
Tue Jun 23 14:04:36 PDT 1998
Using the example from Reverse Bucklin vs. Instant Runoff raises another
question- should only one candidate at a time lose using Reverse Bucklin lose
(i.e. the candidate with the highest majority against him/her) ?
A larger tie example
15 A>B>C>D>E>F
16 B>C>D>E>F>A
17 C>D>E>F>A>B
18 D>E>F>A>B>C
19 E>F>A>B>C>D
20 F>A>B>C>D>E
105
Assume each is acceptable to a majority of the voters using a YES/NO vote.
89 A/B 16
88 B/C 17
87 C/D 18
86 D/E 19
85 E/F 20
90 F/A 15
72 A/C 33
70 B/D 35
68 C/E 37
66 D/F 39
70 E/A 35
74 F/B 31
54 A/D 51
51 B/E 54
48 C/F 57
A>B>C>D>E>F>A
If the 3 last choices are added using Reverse Bucklin, then --
A 51
B 54
C 57 loses with highest majority against
D 54
E 51
F 48
315
15 A>B>D>E>F
16 B>D>E>F>A
17 D>E>F>A>B
18 D>E>F>A>B
19 E>F>A>B>D
20 F>A>B>D>E
105
89 A/B 16
86 D/E 19
85 E/F 20
90 F/A 15
70 B/D 35
66 D/F 39
70 E/A 35
74 F/B 31
54 A/D 51
51 B/E 54
A>B>D>E>F>A, tie continues
Last 2 choices
A 51
B 54 loses
D 39
E 35
F 31
210
15 A>D>E>F
16 D>E>F>A
17 D>E>F>A
18 D>E>F>A
19 E>F>A>D
20 F>A>D>E
105
86 D/E 19
85 E/F 20
90 F/A 15
66 D/F 39
70 E/A 35
54 A/D 51
A>D>E>F>A, tie continues
Last 2 choices
A 70 loses with highest majority against
D 39
E 35
F 66
210
86 D/E 19
85 E/F 20
66 D/F 39
D>E>F, D wins
Note that D had 54 votes against in the last 3 choices.
More information about the Election-Methods
mailing list